Lung segmentation based on random forest and multi-scale edge detection

2019 ◽  
Vol 13 (10) ◽  
pp. 1745-1754 ◽  
Author(s):  
Caixia Liu ◽  
Ruibin Zhao ◽  
Mingyong Pang
2020 ◽  
Vol 52 (2) ◽  
pp. 1631-1649 ◽  
Author(s):  
Caixia Liu ◽  
Ruibin Zhao ◽  
Wangli Xie ◽  
Mingyong Pang

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4532
Author(s):  
Yubin Miao ◽  
Leilei Huang ◽  
Shu Zhang

Phenotypic characteristics of fruit particles, such as projection area, can reflect the growth status and physiological changes of grapes. However, complex backgrounds and overlaps always constrain accurate grape border recognition and detection of fruit particles. Therefore, this paper proposes a two-step phenotypic parameter measurement to calculate areas of overlapped grape particles. These two steps contain particle edge detection and contour fitting. For particle edge detection, an improved HED network is introduced. It makes full use of outputs of each convolutional layer, introduces Dice coefficients to original weighted cross-entropy loss function, and applies image pyramids to achieve multi-scale image edge detection. For contour fitting, an iterative least squares ellipse fitting and region growth algorithm is proposed to calculate the area of grapes. Experiments showed that in the edge detection step, compared with current prevalent methods including Canny, HED, and DeepEdge, the improved HED was able to extract the edges of detected fruit particles more clearly, accurately, and efficiently. It could also detect overlapping grape contours more completely. In the shape-fitting step, our method achieved an average error of 1.5% in grape area estimation. Therefore, this study provides convenient means and measures for extraction of grape phenotype characteristics and the grape growth law.


2012 ◽  
Vol 25 ◽  
pp. 1616-1620 ◽  
Author(s):  
Chen Zhigang ◽  
Cui Yueli ◽  
Chen Aihua

2021 ◽  
Author(s):  
Xuyang Teng ◽  
Yiming Pan ◽  
Meilin He ◽  
Meihua Bi ◽  
Zhaoyang Qiu ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


Optik ◽  
2014 ◽  
Vol 125 (19) ◽  
pp. 5681-5683 ◽  
Author(s):  
Hui Zhang ◽  
Lin Luo ◽  
Kai Yang ◽  
Li Wang ◽  
Xiaorong Gao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document