Steady‐state analysis of high‐voltage gain multiple series Z‐source inverter

2017 ◽  
Vol 10 (12) ◽  
pp. 1518-1528 ◽  
Author(s):  
Ebrahim Babaei ◽  
Elias Shokati Asl
Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3032 ◽  
Author(s):  
Hongchen Liu ◽  
Xi Su ◽  
Junxiong Wang

In this paper, two types of high step-up coupled inductor inverters based on qSBIs (quasi- switched boost inverters) are proposed. By applying the coupled inductor to the qSBIs, the voltage gain of the proposed inverter is regulated by turn ratio and duty ratio. Thus, a high voltage gain can be achieved without the circuits operating at the extreme duty cycle by choosing a suitable turn ratio of the coupled inductor. In addition, the proposed circuits have the characteristics of continuous input current and low voltage stress across the passive components. A boost unit can be added to the proposed inverters for further improvement of the voltage gain. In this paper, the working principle, steady state analysis, and the comparisons of the proposed inverter with other impedance-source inverters are described. A 200 W prototype was created and the experimental results confirm the correctness of the analysis in this paper.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 940 ◽  
Author(s):  
Nafis Subhani ◽  
Ramani Kannan ◽  
Md. Apel Mahmud ◽  
Tushar Kanti Roy ◽  
Mohd Fakhizan Romlie

This paper aims to develop a new switched inductor assisted strong boost Z-source inverter (SL-SBZSI) topology with high voltage gain and analyze the steady-state characteristics of the proposed topology. In the proposed topology, two switched inductors are used within the series impedance structure of the Z-source inverter (ZSI) in order to achieve the high voltage gain. The steady-state characteristics of the proposed topology are analyzed to disseminate its several advantages as compared to traditional ZSIs. The key advantages include the higher boost factor with lower shoot-through duty ratio and lower voltage stresses on capacitors as well as on switches of the inverter bridge. Furthermore, the proposed topology has the soft-start ability which significantly reduces the inrush start-up current while comparing with the traditional ZSI. In the proposed topology, a common ground is shared between the output AC voltage and the input DC voltage source which categorizes this topology to the doubly grounded inverter. The characteristics of the proposed SL-SBZSI are analyzed by considering two operating condition where the simple boost pulse width modulation (PWM) scheme is used to extract the shoot-through pulses. The characteristics of the proposed topology are also compared with different existing topologies along with the conventional modified capacitor assisted Z-source inverter (MCA-ZSI), whose boost factor is much closer to the proposed topology. Rigorous mathematical analyses are presented to clearly demonstrate the benefits of the proposed topology while simulation studies are carried out to demonstrate its distinct features as compared to the existing topology. Finally, experimental studies are conducted to further validate the theoretical and simulation results.


Author(s):  
Abhinav Vinod Deshpande

In this research paper, a novel high step up dc-dc converter with a coupled inductor and voltage doubler circuits is proposed. The converter achieves a high step up voltage gain with an appropriate duty ratio and low voltage stress on the power switches. Also, the energy which is stored in the leakage inductor of the coupled inductor can be recycled to the output. The operating principles and the steady state analysis of the proposed converter are discussed in detail. Finally, a prototype circuit of the proposed converter is implemented in the laboratory in order to verify the performance of the proposed converter.


Author(s):  
Yong-Seng Wong ◽  
Jiann-Fuh Chen ◽  
Kuo-Bin Liu

A high step-up DC-to-DC converter that integrates an isolated transformer and a switched-clamp capacitor is presented in this study. The voltage stress of the main power switch should be clamped to 1/4 V by using the turn ratio and switched-clamp capacitor of an isolated transformer to achieve a high voltage gain. In addition, a passive clamp circuit is employed reduce voltage stress on the main power switch. The energy of the leakage inductor can be recycled by the clamp capacitor because of the passive clamp circuit, thereby improving the power converter efficiency. The converter consists of one isolated transformer, one main switch, three capacitors, and four diodes. Operating principle and steady-state analyses are also discussed. Finally, a 24-V-input voltage to 200-V-output voltage and a 150 W output power prototype converter are fabricated in the laboratory. The maximum efficiency of the converter is 95.1 at 60 W.


2021 ◽  
Author(s):  
BERNARDO ANDRES ◽  
LEONARDO ROMITTI ◽  
LUCIANO SCHUCH ◽  
LEANDO ROGGIA ◽  
FABRíCIO HOFF DUPONT

High step-up converters are required and used in photovoltaic applications, due to low voltage of photovoltaic modules. In this paper, an isolated dc-dc high step-up SEPIC with a Greinacher voltage quadrupler cell is presented. It has the advantage of continuous input current, high efficiency, high voltage gain, isolation and demands a single switch, being suitable for low power grid-tie photovoltaic systems. The operating principles and steady-state analysis are presented, including the detailed analysis of resonant stage, where the value of primary side capacitor is taken into account and plays an important role in the design of the converter, since it directly affects the resonance frequency and RMS current values. Simulation results are presented to validate the analysis and design.


Sign in / Sign up

Export Citation Format

Share Document