scholarly journals Magnifying effect of weak grid connection for a PMSG to induce torsional sub‐synchronous oscillations under the condition of open‐loop modal resonance

2020 ◽  
Vol 14 (4) ◽  
pp. 580-590
Author(s):  
Wenjuan Du ◽  
Yang Wang ◽  
Xubin Wang ◽  
Haifeng Wang
2019 ◽  
Vol 47 (19-20) ◽  
pp. 1731-1743
Author(s):  
Wenjuan Du ◽  
Xiao Chen ◽  
Qiang Fu ◽  
Haifeng Wang ◽  
Tim Littler

2020 ◽  
Vol 35 (4) ◽  
pp. 1928-1938 ◽  
Author(s):  
Wenjuan Du ◽  
Yang Wang ◽  
Haifeng Wang ◽  
Xianyong Xiao ◽  
Xubin Wang ◽  
...  

2016 ◽  
Vol 4 (2) ◽  
pp. 256-264 ◽  
Author(s):  
Xinshou TIAN ◽  
Gengyin LI ◽  
Yongning CHI ◽  
Weisheng WANG ◽  
Haiyan TANG ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3316 ◽  
Author(s):  
Dong Wang ◽  
Xiaojie Zhang ◽  
Lei Yang ◽  
Yunhui Huang ◽  
Wei Huang ◽  
...  

Recent studies show that the loss of stability for a voltage-source converter (VSC) in weak-grid connection is largely related to its synchronization unit, i.e., the phase-locked loop (PLL). This paper studies the synchronization stability of a system comprised by two VSCs in parallel connection to a weak grid. A reduced transfer function based small-signal model, which can allow for the interactions between PLL and converter outer power controls, is first proposed. Then, an improved net damping criterion is used to analyze the damping and stability characters of such system under various operating conditions and different controller configurations. Compared to the conventional net damping criterion, the used criterion has wider applicability in terms of stability judgment. Case studies show that the studied system tends to be unstable at weak-grid or heavy-loading conditions. The instability can be in the form of oscillations or monotonic divergence, in which, the latter is more likely to occur for the converters without grid voltage regulation capabilities. Besides, the net damping-based sensitivity studies can provide guidance on control tuning or design for stability enhancement. Detailed model-based time domain simulations are conducted to verify the analysis results.


2020 ◽  
Vol 5 (2) ◽  
pp. 561-575
Author(s):  
Behnam Nouri ◽  
Ömer Göksu ◽  
Vahan Gevorgian ◽  
Poul Ejnar Sørensen

Abstract. The electrical test and assessment of wind turbines go hand in hand with standards and network connection requirements. In this paper, the generic structure of advanced electrical test benches, including grid emulator or controllable grid interface, wind torque emulator, and device under test, is proposed to harmonize state-of-the-art test sites. On the other hand, modern wind turbines are under development towards new features, concerning grid-forming, black-start, and frequency support capabilities as well as harmonic stability and control interaction considerations, to secure the robustness and stability of renewable-energy-based power systems. Therefore, it is necessary to develop new and revised test standards and methodologies to address the new features of wind turbines. This paper proposes a generic test structure within two main groups, including open-loop and closed-loop tests. The open-loop tests include the IEC 61400-21-1 standard tests as well as the additional proposed test options for the new capabilities of wind turbines, which replicate grid connection compliance tests using open-loop references for the grid emulator. In addition, the closed-loop tests evaluate the device under test as part of a virtual wind power plant and perform real-time simulations considering the grid dynamics. The closed-loop tests concern grid connection topologies consisting of AC and HVDC, as well as different electrical characteristics, including impedance, short-circuit ratio, inertia, and background harmonics. The proposed tests can be implemented using available advanced test benches by adjusting their control systems. The characteristics of a real power system can be emulated by a grid emulator coupled with real-time digital simulator systems through a high-bandwidth power-hardware-in-the-loop interface.


Sign in / Sign up

Export Citation Format

Share Document