scholarly journals Ultra‐compact and ultra‐broadband hybrid plasmonic‐photonic vertical coupler with high coupling efficiency, directivity, and polarisation extinction ratio

2022 ◽  
Author(s):  
Hamed Pezeshki ◽  
Amanda J. Wright ◽  
Eric C. Larkins
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5221
Author(s):  
Xiansong Ren ◽  
Zhaoyu Ji ◽  
Binkai Chen ◽  
Jing Zhou ◽  
Zeshi Chu ◽  
...  

Single-wall carbon nanotube (SWCNT) thin films are promising for sensitive uncooled infrared detection based on the photothermoelectric effect. The SWCNT film is usually shaped into a belt and diversely doped to form a p-n junction at the center. Under the illumination of a focused incident light, the temperature gradient from the junction to the contacts leads to photoresponse. When the SWCNTs are aligned in one direction, the photoresponse becomes polarization selective. Although a typical bowtie antenna can improve the responsivity and polarization extinction ratio by deep-subwavelength light focusing, the absolute absorptance of the junction region is only 0.6%. In this work, the antenna was engineered for a higher light coupling efficiency. By integrating a bottom metal plane at a specific distance from the SWCNT film and optimizing the antenna geometries, we achieved ultra-efficient impedance matching between the antenna and the SWCNTs, thus the absorptance of the junction region was further enhanced by 21.3 times and reached 13.5%, which is more than 3 orders of magnitude higher than that of the device without the engineered antenna. The peak responsivity was further enhanced by 19.9 times and responsivity reached 1500 V/W at 1 THz. The resonant frequency can be tuned by changing the size of the antenna. Over the frequency range of 0.5 THz to 1.5 THz, the peak responsivity was further enhanced by 8.1 to 19.9 times, and the polarization extinction ratio was enhanced by 2.7 to 22.3 times. The highest polarization extinction ratio reached 3.04 × 105 at 0.5 THz. The results are based on the numerical simulations of the light and the thermal fields.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hirohisa Yokota ◽  
Hirotomo Yashima ◽  
Yoh Imai ◽  
Yutaka Sasaki

Fused coupler forming with a single-mode fiber (SMF) and a photonic crystal fiber (PCF) is one of the solutions for optical coupling from a light source to a PCF. In this paper, we presented coupling characteristics of a fused fiber coupler formed with an ordinary SMF and a PCF having air hole collapsed taper. A prototype of SMF-PCF coupler with air hole collapsed taper was fabricated using CO2 laser irradiation. The coupling efficiency from SMF to PCF was −6.2 dB at 1554 nm wavelength in the fabricated coupler. The structure of the SMF-PCF coupler to obtain high coupling efficiency was theoretically clarified by beam propagation analysis using an equivalent model of the coupler with simplification. It was clarified that appropriately choosing the prestretched or etched SMF diameter and the length of air hole collapsed region was effective to obtain high coupling efficiency that was a result of high extinction ratio at cross port and low excess loss. We also demonstrated that the diameter of prestretched SMF to obtain high coupling efficiency was insensitive to the air hole diameter ratio to pitch of the PCF in the air hole collapsed SMF-PCF coupler.


2020 ◽  
Vol 10 (4) ◽  
pp. 369-380
Author(s):  
K. Maji ◽  
K. Mukherjee ◽  
A. Raja

All optical tri-state frequency encoded logic gates NOT and NAND are proposed and numerically investigated using TOAD based interferometric switch for the first time to the best of our knowledge. The optical power spectrum, extinction ratio, contrast ration, and amplified spontaneous noise are calculated to analyze and confirm practical feasibility of the gates. The proposed device works for low switching energy and has high contrast and extinction ratio as indicated in this work.


1986 ◽  
Vol 22 (21) ◽  
pp. 1110 ◽  
Author(s):  
D.N. Christodoulides ◽  
L.A. Reith ◽  
M.A. Saifi

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jesuwanth Sugesh Ramesh Gabriel ◽  
Sivasubramanian Arunagiri

AbstractIn this paper, we report the performance of a carrier depletion Silicon PIN phase shifter with over layer of 130 nm. It is observed that an optimum intrinsic gap of 250 nm for a device length of 5 mm at 2 V, resulted in Extinction Ratio (ER) of 23.41 dB and Bit Error Rate (BER) of 1.00 × 10−7 is obtained for 50 Gbps. The phase shifter is also designed for length 2 mm with an intrinsic gap of 100 nm at an operating voltage <4 V. The study also reveals that the proposed design for Mach-Zehnder modulator operating at a data rate of 100 Gbps for the concentration of P = 7 × 1017 cm−3 and N = 5 × 1017 cm−3 gives better BER and phase performance. The proposed design was also analysed in an intra-data centre communication setup of fibre length 15 km.


2021 ◽  
Vol 487 ◽  
pp. 126798
Author(s):  
Peyman Malekzadeh ◽  
Gholam-Mohammad Parsanasab ◽  
Hamed Nikbakht ◽  
Ezeddin Mohajerani ◽  
Majid Taghavi ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashif Raja ◽  
Kousik Mukherjee ◽  
Jitendra Nath Roy

Abstract Semiconductor optical amplifier-based polarization rotation is utilized in designing all-optical AND gate at 100 Gbps. The AND gate shows high extinction ratio (ER ∼ 15 dB), contrast ratio (CR ∼ 18 dB) and quality factor (Q-factor ∼ 16 dB). The effect of the amplified spontaneous emission noise on the performances is also investigated. The AND gate has relative eye opening (REO) varying from 93.52 to 97.1% for 10–30 dB unsaturated gain. Using the AND gate a majority voting gate is designed and analyzed and has Q ∼ 11.7 dB with REO ∼ 91%.


Author(s):  
Tiesong Xu ◽  
Minghui Zhong ◽  
Xiaolin Liang ◽  
Jia Liu ◽  
Bin Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document