Smart healthcare systems enabled by edge computing

2021 ◽  
Author(s):  
Mohammad (Behdad) Jamshidi ◽  
Tarek Frikha ◽  
Asal Sabet ◽  
Omar Cheikhrouhou ◽  
Habib Hamam

UNSTRUCTURED Processing medical data, diagnosing diseases, determining the best possible medical centers or physicians, and recommending the more effective remedies or drugs in the earliest time are the most important challenges to deploy intelligent systems for healthcare purposes. Hence, utilization of the Internet of Medical Things (IoMT) with Edge Computing (EC) technology will result in a strong network to aggregate the healthcare data more reliably and solve the aforementioned challenges. However, the administration of the millions of individuals with a wide variety of physical or mental disorders is another challenge associated with the use of such Artificial Intelligence-based platforms, especially when it comes to a large number of insurance conditions and companies. Furthermore, although the EC-based platforms can increase the security of the data, there are still vulnerable to face some cyber-attacks. Thus, the privacy of sensitive personal information of patients should be considered. Blockchain is a suitable option to overcome the problems associated with medical documentation and administration of patient’s affairs using smart contracts. An EC-based platform based on blockchain to improve the weaknesses of conventional smart healthcare systems is rendered in this research. The proposed platform takes the advantage of both EC and blockchain in the terms of speed, security, accuracy, and bandwidth. It should be noted that this method could be utilized as a flexible infrastructure for the next generation healthcare systems using any kind of crypto network like Bitcoin, Ethereum, Cardano, etc.


Author(s):  
Nivethitha V. ◽  
Aghila G.

Some of the largest global industries that is driving smart city environments are anywhere and anytime health monitoring applications. Smart healthcare systems need to be more preventive and responsive as they deal with sensitive data. Even though cloud computing provides solutions to the smart healthcare applications, the major challenge imposed on cloud computing is how could the centralized traditional cloud computing handle voluminous data. The existing models may encounter problems related to network resource utilization, overheads in network response time, and communication latency. As a solution to these problems, edge-oriented computing has emerged as a new computing paradigm through localized computing. Edge computing expands the compute, storage, and networking capabilities to the edge of the network which will respond to the above-mentioned issues. Based on cloud computing and edge computing, in this chapter an opportunistic edge computing architecture is introduced for smart provisioning of healthcare data.


Author(s):  
P. Jeyadurga ◽  
S. Ebenezer Juliet ◽  
I. Joshua Selwyn ◽  
P. Sivanisha

The Internet of things (IoT) is one of the emerging technologies that brought revolution in many application domains such as smart cities, smart retails, healthcare monitoring and so on. As the physical objects are connected via internet, security risk may arise. This paper analyses the existing technologies and protocols that are designed by different authors to ensure the secure communication over internet. It additionally focuses on the advancement in healthcare systems while deploying IoT services.


2021 ◽  
Author(s):  
Michael Enbibel

This research is done for optimizing telemedicine framework by using fogging or fog computing for smart healthcare systems. Fog computing is used to solve the issues that arise on telemedicine framework of smart healthcare system like Infrastructural, Implementation, Acceptance, Data Management, Security, Bottleneck system organization, and Network latency Issues. we mainly used Distributed Data Flow (DDF) method using fog computing in order to fully solve the listed issues.


The advancement of information and communications technology has changed an IoMT-enabled healthcare system. The Internet of Medical Things (IoMT) is a subset of the Internet of Things (IoT) that focuses on smart healthcare (medical) device connectivity. While the Internet of Medical Things (IoMT) communication environment facilitates and supports our daily health activities, it also has drawbacks such as password guessing, replay, impersonation, remote hijacking, privileged insider, denial of service (DoS), and man-in-the-middle attacks, as well as malware attacks. Malware botnets cause assaults on the system's data and other resources, compromising its authenticity, availability, confidentiality and, integrity. In the event of such an attack, crucial IoMT communication data may be exposed, altered, or even unavailable to authorised users. As a result, malware protection for the IoMT environment becomes critical. In this paper, we provide several forms of malware attacks and their consequences. We also go through security, privacy, and different IoMT malware detection schemes


Author(s):  
Ahmed Shawish ◽  
Maria Salama

Healthcare is one of the most important sectors in all countries and significantly affects the economy. As such, the sector consumes an average of 9.5% of the gross domestic product across the most developed countries; they should invoke smart healthcare systems to efficiently utilize available resources, vastly handle spontaneous emergencies, and professionally manage the population health records. With the rise of the Cloud and Mobile Computing, a vast variety of added values have been introduced to software and IT infrastructure. This chapter provides a comprehensive review on the new Cloud-based and mobile-based applications that have been developed in the healthcare field. Cloud's availability, scalability, and storage capabilities, in addition to the Mobile's portability, wide coverage, and accessibility features, contributed to the fulfillment of healthcare requirements. The chapter shows how Cloud and Mobile opened a new environment for innovative services in the healthcare field and discusses the open research issues.


Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) revolution is improving the proficiency of human healthcare infrastructures, and this chapter analyzes the applications of IoT in healthcare systems with diversified aspects such as topological arrangement of medical devices, layered architecture, and platform services. This chapter focuses on advancements in IoT-based healthcare in order to identify the communication and sensing technologies enabling the smart healthcare systems. The transformation of healthcare from doctor-centric to patient-centric with the diversified applications of IoT is discussed in detail. In addition, this chapter examines the various issues to be emphasized on designing an effective IoT-based healthcare system. It also explores security in healthcare systems and the possible security threats that may be vulnerable to the security essentials. Finally, this chapter summarizes the procedure of applying machine learning techniques on healthcare streaming data which provides intelligence to the systems.


Sign in / Sign up

Export Citation Format

Share Document