scholarly journals An efficient waveform diversity based on variational mode decomposition of coded beat‐frequency shifted signals algorithm for multiple‐input multiple‐output millimetre‐wave imaging

Author(s):  
Amir Masoud Molaei ◽  
Okan Yurduseven ◽  
Vincent Fusco
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2722 ◽  
Author(s):  
Ze Yu ◽  
Shusen Wang ◽  
Wei Liu ◽  
Chunsheng Li

Compared with single-input multiple-output (SIMO) radar, colocated multiple-input multiple-output (MIMO) radar can detect moving targets better by adopting waveform diversity. When the colocated MIMO radar transmits a set of orthogonal waveforms, the transmit weights are usually set equal to one, and the receive weights are adaptively adjusted to suppress clutter based on space-time adaptive processing technology. This paper proposes the joint design of space-time transmit and receive weights for colocated MIMO radar. The approach is based on the premise that all possible moving targets are detected by setting a lower threshold. In each direction where there may be moving targets, the space-time transmit and receive weights can be iteratively updated by using the proposed approach to improve the output signal-to-interference-plus-noise ratio (SINR), which is helpful to improve the precision of target detection. Simulation results demonstrate that the proposed method improves the output SINR by greater than 13 dB.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Guang-ming Li ◽  
Qun Zhang ◽  
Qi-yong Liu ◽  
Jia Liang ◽  
Dan Wang ◽  
...  

Frequency diverse array (FDA) has attracted much attention in recent years due to its range-angle-dependent beampattern. Multiple-input multiple-output (MIMO) radar can offer waveform diversity to increase the virtual aperture length for azimuth coherent focus processing in radar imaging. Combining the advantages of FDA and MIMO radar, FDA-MIMO radar can steer multiple beams to different targets in the same line of sight (LOS) of radar with different waveforms. In this paper, an improved FDA model with the logistic map is proposed to get the aperiodic and range-angle uncoupling beampattern. Based on the proposed FDA, combining the FDA-MIMO radar, the waveform and chirp rate jitter techniques are adopted to mainlobe jamming suppression. Simulation results show the effectiveness of the proposed method.


2015 ◽  
Vol 2 (12) ◽  
pp. 150322 ◽  
Author(s):  
Nicholas P. Lawrence ◽  
Brian W.-H. Ng ◽  
Hedley J. Hansen ◽  
Derek Abbott

Millimetre-waves offer the possibility of wide bandwidth and consequently high data rate for wireless communications. For both uni- and dual-polarized systems, signals sent over a link may suffer severe degradation due to antenna misalignment. Orientation robustness may be enhanced by the use of mutual orthogonality in three dimensions. Multiple-input multiple-output polarization diversity offers a way of improving signal reception without the limitations associated with spatial diversity. Scattering effects often assist propagation through multipath. However, high path loss at millimetre-wave frequencies may limit any reception enhancement through scattering. We show that the inclusion of a third orthogonal dipole provides orientation robustness in this setting, as well as in a rich scattering environment, by means of a Rician fading channel model covering all orientations for a millimetre-wave, tri-orthogonal, half-wave dipole transmitter and receiver employing polarization diversity. Our simulation extends the analysis into three dimensions, fully exploiting individual sub-channel paths. In both the presence and absence of multipath effects, capacity is observed to be higher than that of a dual-polarized system over the majority of a field of view.


Sign in / Sign up

Export Citation Format

Share Document