scholarly journals The formation of a thick disk through the heating of a thin disk: Agreement with orbital eccentricities of stars in the solar neighborhood

2010 ◽  
Vol 525 ◽  
pp. L3 ◽  
Author(s):  
P. Di Matteo ◽  
M. D. Lehnert ◽  
Y. Qu ◽  
W. van Driel
2017 ◽  
Vol 608 ◽  
pp. L1 ◽  
Author(s):  
M. R. Hayden ◽  
A. Recio-Blanco ◽  
P. de Laverny ◽  
S. Mikolaitis ◽  
C. C. Worley

We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external galaxies.


2008 ◽  
Vol 4 (S258) ◽  
pp. 23-30 ◽  
Author(s):  
Sofia Feltzing ◽  
Thomas Bensby

AbstractWe discuss the age of the stellar disks in the solar neighborhood. After reviewing the various methods for age dating, we discuss current estimates of the ages of both the thin- and the thick disks. We present preliminary results for kinematically-selected stars that belong to the thin- as well as the thick disk. All of these dwarf and sub-giant stars have been studied spectroscopically and we have derived both elemental abundances as well as ages for them. A general conclusion is that in the solar neighborhood, on average, the thick disk is older than the thin disk. However, we caution that the exclusion of stars with effective temperatures around 6500 K might result in a biased view of the full age distribution for the stars in the thick disk.


2018 ◽  
Vol 618 ◽  
pp. A78 ◽  
Author(s):  
Misha Haywood ◽  
Paola Di Matteo ◽  
Matthew Lehnert ◽  
Owain Snaith ◽  
Francesca Fragkoudi ◽  
...  

We show that the bulge and the disk of the Milky Way (MW) at R ≲ 7 kpc are well described by a unique chemical evolution and a two-phase star formation history (SFH). We argue that the populations within this inner disk, not the entire disk, are the same, and that the outer Lindblad resonance (OLR) of the bar plays a key role in explaining this uniformity. In our model of a two-phase SFH, the metallicity, [α/Fe] and [α/H] distributions, and age-metallicity relation are all compatible with the observations of both the inner disk and bulge. The dip at [Fe/H] ∼ 0 dex seen in the metallicity distributions of the bulge and inner disk reflects the quenching episode in the SFH of the inner MW at age ∼8 Gyr, and the common evolution of the bulge and inner disk stars. Our results for the inner region of the MW, R ≲ 7 kpc, are consistent with a rapid build-up of a large fraction of its total baryonic mass within a few billion years. We show that at z ≤ 1.5, when the MW was starting to quench, transitioning between the end of the α-enhanced thick disk formation to the start of the thin disk, and yet was still gas rich, the gas accretion rate could not have been significant. The [α/Fe] abundance ratio before and after this quenching phase would be different, which is not observed. The decrease in the accretion rate and gas fraction at z ≤ 2 was necessary to stabilize the disk allowing the transition from thick to thin disks, and for beginning the secular phase of the MW’s evolution. This possibly permitted a stellar bar to develop which we hypothesize is responsible for quenching the star formation. The present analysis suggests that MW history, and in particular at the transition from the thick to the thin disk – the epoch of the quenching – must have been driven by a decrease of the star formation efficiency. We argue that the decline in the intensity of gas accretion, the formation of the bar, and the quenching of the star formation rate (SFR) at the same epoch may be causally connected thus explaining their temporal coincidence. Assuming that about 20% of the gas reservoir in which metals are diluted is molecular, we show that our model is well positioned on the Schmidt-Kennicutt relation at all times.


1995 ◽  
Vol 164 ◽  
pp. 386-386
Author(s):  
C. Soubiran ◽  
M.N. Perrin ◽  
R. Cayrel ◽  
E. Chereul

The aim of our stellar population study is to investigate the kinematical and chemical characteristics of the thin disk, thick disk and halo of the Galaxy. We have selected 51 stars in 2 astrometric and photometric surveys at l = 42°, b = +79° (Soubiran 1992) and l = 167°, b = +47° (Ojha et al. 1994), on the basis of the Reduced Proper Motion Diagram. They were observed with the 193cm telescope at Observatoire de Haute-Provence, with the CARELEC spectrograph (dispersion of 66Å/mm, FWHM of 3.0Å, range λλ4600 – 5500Å), together with 43 comparison stars with known fundamental parameters. The derivation of Teff, logg and [Fe/H] was done differentially using a grid of synthetic spectra and the comparison stars, as described in Cayrel et al. (1991). Twenty of the target stars were found to be more deficient than −0.5. In the (V, [Fe/H]) distribution, the halo stars are clearly separated from the other stars with a mean of (V, [Fe/H]) ≃ (−210km/s, – 1.4dex). Because of the small size of the sample, it was not possible to discriminate the thick disk from the thin disk. We have taken 200 more spectra, and with these new observations, we hope to be able to deconvolve the 3 populations in the (U, V, W, [Fe/H]) space as we did previously with the (U, V) velocity (Soubiran 1993).


2004 ◽  
Vol 21 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Akihiko Ibukiyama

AbstractWe derive age–metallicity relations (AMRs) and orbits for the 1658 solar neighbourhood stars for which accurate distances are measured by the Hipparcos satellite. The sample comprises 1382 thin disk stars, 229 thick disk stars, and 47 halo stars according to their orbital parameters. We find a considerable scatter for thin disk AMRs along the one-zone Galactic chemical evolution (GCE) model. Orbits and metallicities of thin disk stars show no clear relation to each other. The scatter along the AMR exists even if stars with the same orbits are selected. We examine simple extensions of one-zone GCE models which account for inhomogeneity in the effective yield and inhomogeneous star formation rate in the Galaxy. Both extensions of the one-zone GCE model cannot account for the scatter in the age–[Fe/H]–[Ca/Fe] relation simultaneously. We conclude, therefore, that the scatter along the thin disk AMR is an essential feature in the formation and evolution of the Galaxy. The AMR for thick disk stars shows that star formation terminated 8 Gyr ago in the thick disk. As previously reported, thick disk stars are more Ca-rich than thin disk stars with the same [Fe/H]. We find that thick disk stars show a vertical abundance gradient. These three facts — AMR, vertical gradient, and [Ca/Fe]–[Fe/H] relation — support monolithic collapse and/or accretion of satellite dwarf galaxies as likely thick disk formation scenarios.


1995 ◽  
Vol 166 ◽  
pp. 368-368
Author(s):  
Devendra Ojha ◽  
Olivier Bienaymé

We have been doing a sample survey in UBV photometry and proper motions as part of an investigation of galactic structure and evolution. The 3 fields in the direction of galactic anticentre (l = 167°, b = 47°), centre (l = 3°, b = 47°) and antirotation (l = 278°, b = 47°) have been surveyed. The high astrometric quality of the MAMA machine (CAI, Paris) gives access to micronic accuracy (leading to < 2 mas per year) on proper motions with a 35 years time base. The kinematical distribution of F and G–type stars have been probed to distances up to 2.5 kpc above the galactic plane. We have derived the constrain on the structural parameters of the thin and thick disk components of the Galaxy (Ojha et al. 1994abc): • The scale lengths of the thin and thick disks are found to be 2.6±0.1 and 3.3±0.5 kpc, respectively. The density laws for stars with 3.5≤MV≤5 as a function of distance above the plane follow a single exponential with scale height of ∼ 260 pc (thin disk) and a second exponential with scale height of ∼ 800 pc (thick disk) with a local normalization of 5–6% of the disk.• The thin disk population was found with (〈 U+W〉, 〈V〉) = (1±4, −14±2) km/s and velocity dispersions (σU+W, σV) = (35±2, 30±1) km/s. The thick disk population was found to have a rotational velocity of Vrot = 177 km/s and velocity dispersions (σU, σV, σW) = (67,51,42) km/s. No dependence with r and z distances was found in the asymmetric drift measurements of the thick disk population.


2017 ◽  
Vol 12 (S330) ◽  
pp. 156-159 ◽  
Author(s):  
E. Delgado Mena ◽  
M. Tsantaki ◽  
V. Zh. Adibekyan ◽  
S. G. Sousa ◽  
N. C. Santos ◽  
...  

AbstractIn this work we present chemical abundances of heavy elements (Z>28) for a homogeneous sample of 1059 stars from HARPS planet search program. We also derive ages using parallaxes from Hipparcos and Gaia DR1 to compare the results. We study the [X/Fe] ratios for different populations and compare them with models of Galactic chemical evolution. We find that thick disk stars are chemically disjunt for Zn adn Eu. Moreover, the high-alpha metal-rich population presents an interesting behaviour, with clear overabundances of Cu and Zn and lower abundances of Y and Ba with respect to thin disk stars. Several abundance ratios present a significant correlation with age for chemically separated thin disk stars (regardless of their metallicity) but thick disk stars do not present that behaviour. Moreover, at supersolar metallicities the trends with age tend to be weaker for several elements.


1996 ◽  
Vol 169 ◽  
pp. 427-428
Author(s):  
Roland Buser ◽  
Jianxiang Rong

The metallicity-sensitive (U – G) colors from the new homogeneous catalog of photographic RGU data in seven high-latitude fields have been used to determine the larger-scale metallicity distributions of the Galactic population components. For the thick disk, preliminary analysis based on our best structural models provides a mean metallicity 〈[M/H]〉 = −0.6 ± 0.3dex and a marginal vertical metallicity gradient ≈ −0.1dex/kpc. The observed color distributions are further consistent with the (old) thin disk having mean abundance 〈[M/H]〉 = −0.3 ± 0.2dex and abundance gradient ∂[M/H]/∂z = −0.6dex/kpc.


Sign in / Sign up

Export Citation Format

Share Document