scholarly journals The electron energy loss rate due to radiative recombination

2017 ◽  
Vol 599 ◽  
pp. A10 ◽  
Author(s):  
Junjie Mao ◽  
Jelle Kaastra ◽  
N. R. Badnell
2008 ◽  
Vol 245 (5) ◽  
pp. 963-966 ◽  
Author(s):  
A. L. Vartanian ◽  
A. L. Asatryan ◽  
A. A. Kirakosyan

2007 ◽  
Vol 389 (2) ◽  
pp. 258-262 ◽  
Author(s):  
Arshak L. Vartanian ◽  
Anna L. Asatryan ◽  
Albert A. Kirakosyan

2011 ◽  
Author(s):  
V. S. Katti ◽  
S. S. Kubakaddi ◽  
Alka B. Garg ◽  
R. Mittal ◽  
R. Mukhopadhyay

Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Sign in / Sign up

Export Citation Format

Share Document