scholarly journals Neon, sulphur, and argon abundances of planetary nebulae in the sub-solar metallicity Galactic anti-centre

2018 ◽  
Vol 615 ◽  
pp. A29 ◽  
Author(s):  
G. J. S. Pagomenos ◽  
J. Bernard-Salas ◽  
S. R. Pottasch

Context. Spectra of planetary nebulae show numerous fine structure emission lines from ionic species, enabling us to study the overall abundances of the nebular material that is ejected into the interstellar medium. The abundances derived from planetary nebula emission show the presence of a metallicity gradient within the disk of the Milky Way up to Galactocentric distances of ~10 kpc, which are consistent with findings from studies of different types of sources, including H II regions and young B-type stars. The radial dependence of these abundances further from the Galactic centre is in dispute. Aims. We aim to derive the abundances of neon, sulphur and argon from a sample of planetary nebulae towards the Galactic anti-centre, which represent the abundances of the clouds from which they were formed, as they remain unchanged throughout the course of stellar evolution. We then aim to compare these values with similarly analysed data from elsewhere in the Milky Way in order to observe whether the abundance gradient continues in the outskirts of our Galaxy. Methods. We have observed 23 planetary nebulae at Galactocentric distances of 8–21 kpc with Spitzer IRS. The abundances were calculated from infrared emission lines, for which we observed the main ionisation states of neon, sulphur, and argon, which are little affected by extinction and uncertainties in temperature measurements or fluctuations within the planetary nebula. We have complemented these observations with others from optical studies in the literature, in order to reduce or avoid the need for ionisation correction factors in abundance calculations. Results. The overall abundances of our sample of planetary nebulae in the Galactic anti-centre are lower than those in the solar neighbourhood. The abundances of neon, sulphur, and argon from these stars are consistent with a metallicity gradient from the solar neighbourhood up to Galactocentric distances of ~20 kpc, albeit with varying degrees of dispersion within the data.

2018 ◽  
Vol 616 ◽  
pp. A11 ◽  
Author(s):  
◽  
D. Katz ◽  
T. Antoja ◽  
M. Romero-Gómez ◽  
R. Drimmel ◽  
...  

Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than GRVS = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (σϖ∕ϖ ≤ 20%), and precise Galactic cylindrical velocities (median uncertainties of 0.9-1.4 km s-1 and 20% of the stars with uncertainties smaller than 1 km s-1 on all three components). From this sample, we extracted a sub-sample of 3.2 million giant stars to map the velocity field of the Galactic disc from ~5 kpc to ~13 kpc from the Galactic centre and up to 2 kpc above and below the plane. We also study the distribution of 0.3 million solar neighbourhood stars (r < 200 pc), with median velocity uncertainties of 0.4 km s-1, in velocity space and use the full sample to examine how the over-densities evolve in more distant regions. Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U − V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.


1963 ◽  
Vol 138 ◽  
pp. 1308 ◽  
Author(s):  
Robert J. Gould

1993 ◽  
Vol 155 ◽  
pp. 89-89 ◽  
Author(s):  
Sueli M. Viegas ◽  
Ruth Gruenwald

Observations of near infrared emission-lines are becoming available and can be a powerful tool to improve our knowledge on planetary nebulae properties. For wavelengths in the range 1 to 5 μm, the emission-lines correspond to atomic transitions of high ionized species of heavy elements. In particular, the [Si VI] 1.96μm and [Si VII] 2.48μm lines have already been detected (Ashley and Hyland, 1988).


1983 ◽  
Vol 103 ◽  
pp. 545-545
Author(s):  
T.R. Gull ◽  
S.P. Maran ◽  
T.P. Stecher ◽  
L. H. Aller

Three high-excitation planetary nebulae in the Magellanic Clouds were successfully observed with the International Ultraviolet Explorer. Emission lines as well as nebular and stellar continua were detected. Fluxes in the lines 1550 C IV, 1640 He II, 1663 O III, and 1909 C III were measured in spectra of LMC P40, SMC N2, and SMC N5 obtained with the IUE short wavelength spectrograph; 2422 Ne IV was measured in P40 with the long wavelength spectrograph. The data were analyzed together with groundbased observations by Aller in order to derive ionization models and the nebular abundances of He, C, N, O, S, Ar. The C abundances are as large as those typically found in galactic planetaries, although the interstellar media of the Clouds are notably deficient in C. Thus, the C was synthesized in the progenitor stars and presumably was lifted to the stellar envelopes by convection prior to the ejection of the nebulae. Other planetary nebulae in the Clouds, as well as the planetary nebula in the Fornax galaxy, may be observable with IUE.


2021 ◽  
Vol 923 (2) ◽  
pp. 198
Author(s):  
James M. De Buizer ◽  
Wanggi Lim ◽  
Mengyao Liu ◽  
Nicole Karnath ◽  
James T. Radomski

Abstract We present our third set of results from our mid-infrared imaging survey of Milky Way Giant H ii regions with our detailed analysis of W49A, one of the most distant, yet most luminous, GH ii regions in the Galaxy. We used the FORCAST instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA) to obtain 20 and 37 μm images of the entire ∼5.′0 × 3.′5 infrared-emitting area of W49A at a spatial resolution of ∼3″. Utilizing these SOFIA data in conjunction with previous multiwavelength observations from the near-infrared to radio, including Spitzer-IRAC and Herschel-PACS archival data, we investigate the physical nature of individual infrared sources and subcomponents within W49A. For individual compact sources, we used the multiwavelength photometry data to construct spectral energy distributions (SEDs) and fit them with massive young stellar object (MYSO) SED models and find 22 sources that are likely to be MYSOs. Ten new sources are identified for the first time in this work. Even at 37 μm we are unable to detect infrared emission from the sources on the western side of the extremely extinguished ring of compact radio emission sources known as the Welch Ring. Utilizing multiwavelength data, we derived luminosity-to-mass ratio and virial parameters of the extended radio subregions of W49A to estimate their relative ages and find that overall the subcomponents of W49A have a very small spread in evolutionary state compared to our previously studied GH ii regions.


1993 ◽  
Vol 155 ◽  
pp. 570-570
Author(s):  
Robin Ciardullo ◽  
George Jacoby

Several authors have analyzed the kinematics of elliptical galaxies using surface photometry in combination with absorption line velocity dispersion measurements. However, these analyses never explore the halos of galaxies, since the best absorption line measurements extend only ∼1 re. The only way to extend our knowledge of stellar kinematics to larger radii is to use the emission lines of planetary nebula for radial velocity measurements.


1983 ◽  
Vol 103 ◽  
pp. 259-264 ◽  
Author(s):  
G. A. Shields

Gas-phase abundances of C, Mg, Si, Ca, and Fe have been measured for a number of planetary nebulae on the basis of optical, ultraviolet, and infrared emission-line intensities. The abundances of Si, Ca, and Fe show characteristic depletions of one to two orders-of-magnitude as a result of grain formation. Magnesium shows a similar depletion in the outer parts of several planetary nebulae, but it is undepleted in their inner parts. Carbon is not detectably depleted by grain formation. Efficient condensation of refractory elements can easily occur during the early stages of formation of a planetary nebula; but the observed, residual gas-phase abundances are not understood. Observations of molecules in the envelopes of late-type stars may provide useful clues.


2017 ◽  
Vol 12 (S330) ◽  
pp. 222-224
Author(s):  
Jason A. S. Hunt

AbstractI summarize two recent projects involving the Gaia-TGAS data. Firstly, I discuss a detection of a lack of disc stars in the Solar neighbourhood with velocities close to zero angular momentum. We use predictions of this effect to make a measurement of the Solar rotation velocity around the Galactic centre, and also of R0. Secondly, I discuss a detection of a group of stars with systematically high Galactic rotation velocity. We propose that it may be caused by the Perseus arm and compare the data with simulations.


Sign in / Sign up

Export Citation Format

Share Document