scholarly journals The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293–2422

2018 ◽  
Vol 612 ◽  
pp. A72 ◽  
Author(s):  
S. K. Jacobsen ◽  
J. K. Jørgensen ◽  
M. H. D. van der Wiel ◽  
H. Calcutt ◽  
T. L. Bourke ◽  
...  

Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims. The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods. We present 13CO, C17O and C18O J = 3–2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293–2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results. Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293–2422 hot corino which used a single-source approximation. Conclusions. Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; LA ~ 18 L⊙ and LB ~ 3 L⊙.

2020 ◽  
Vol 642 ◽  
pp. A165
Author(s):  
Ch. Rab ◽  
I. Kamp ◽  
C. Dominik ◽  
C. Ginski ◽  
G. A. Muro-Arena ◽  
...  

Context. Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i.e. gas gaps) remain rare and uncertain. Aims. We want to investigate the importance of thermo-chemical processes for the interpretation of high-spatial-resolution gas observations of planet-forming disks and their impact on the derived gas properties. Methods. We applied the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel) to model the dust and gas disk of HD 163296 self-consistently, using the DSHARP (Disk Substructure at High Angular Resolution) gas and dust observations. With this model we investigated the impact of dust gaps and gas gaps on the observables and the derived gas properties, considering chemistry, and heating and cooling processes. Results. We find distinct peaks in the radial line intensity profiles of the CO line data of HD 163296 at the location of the dust gaps. Our model indicates that those peaks are not only a consequence of a gas temperature increase within the gaps but are mainly caused by the absorption of line emission from the back side of the disk by the dust rings. For two of the three prominent dust gaps in HD 163296, we find that thermo-chemical effects are negligible for deriving density gradients via measurements of the rotation velocity. However, for the gap with the highest dust depletion, the temperature gradient can be dominant and needs to be considered to derive accurate gas density profiles. Conclusions. Self-consistent gas and dust thermo-chemical modelling in combination with high-quality observations of multiple molecules are necessary to accurately derive gas gap depths and shapes. This is crucial to determine the origin of gaps and rings in planet-forming disks and to improve the mass estimates of forming planets if they are the cause of the gap.


2020 ◽  
Vol 642 ◽  
pp. A33
Author(s):  
Luc Dessart ◽  
D. John Hillier

Nebular phase spectra of core-collapse supernovae (SNe) provide critical and unique information on the progenitor massive star and its explosion. We present a set of one-dimensional steady-state non-local thermodynamic equilibrium radiative transfer calculations of type II SNe at 300 d after explosion. Guided by the results obtained from a large set of stellar evolution simulations, we craft ejecta models for type II SNe from the explosion of a 12, 15, 20, and 25 M⊙ star. The ejecta density structure and kinetic energy, the 56Ni mass, and the level of chemical mixing are parametrized. Our model spectra are sensitive to the adopted line Doppler width, a phenomenon we associate with the overlap of Fe II and O I lines with Ly α and Ly β. Our spectra show a strong sensitivity to 56Ni mixing since it determines where decay power is absorbed. Even at 300 d after explosion, the H-rich layers reprocess the radiation from the inner metal rich layers. In a given progenitor model, variations in 56Ni mass and distribution impact the ejecta ionization, which can modulate the strength of all lines. Such ionization shifts can quench Ca II line emission. In our set of models, the [O I] λλ 6300, 6364 doublet strength is the most robust signature of progenitor mass. However, we emphasize that convective shell merging in the progenitor massive star interior can pollute the O-rich shell with Ca, which would weaken the O I doublet flux in the resulting nebular SN II spectrum. This process may occur in nature, with a greater occurrence in higher mass progenitors, and this may explain in part the preponderance of progenitor masses below 17 M⊙ that are inferred from nebular spectra.


2020 ◽  
Vol 643 ◽  
pp. L13
Author(s):  
L. Dessart ◽  
D. John Hillier

Supernova (SN) explosions play a pivotal role in the chemical evolution of the Universe and the origin of life through the metals they release. Nebular phase spectroscopy constrains such metal yields, for example through forbidden line emission associated with O I, Ca II, Fe II, or Fe III. Fluid instabilities during the explosion produce a complex 3D ejecta structure, with considerable macroscopic, but no microscopic, mixing of elements. This structure sets a formidable challenge for detailed nonlocal thermodynamic equilibrium radiative transfer modeling, which is generally limited to 1D in grid-based codes. Here, we present a novel and simple method that allows for macroscopic mixing without any microscopic mixing, thereby capturing the essence of mixing in SN explosions. With this new technique, the macroscopically mixed ejecta are built by shuffling the shells from the unmixed coasting ejecta in mass space, or equivalently in velocity space. The method requires no change to the radiative transfer, but it necessitates high spatial resolution to resolve the rapid variation in composition with depth inherent to this shuffled-shell structure. We show the results for a few radiative-transfer simulations for a Type II SN explosion from a 15 M⊙ progenitor star. Our simulations capture the strong variations in temperature or ionization between the various shells that are rich in H, He, O, or Si. Because of nonlocal energy deposition, γ rays permeate through an extended region of the ejecta, making the details of the shell arrangement unimportant. The greater physical consistency of the method delivers spectral properties at nebular times that are more reliable, in particular in terms of individual emission line strengths, which may serve to constrain the SN yields as well as the progenitor mass for core collapse SNe. The method works for all SN types.


2020 ◽  
Vol 635 ◽  
pp. A121 ◽  
Author(s):  
G. A. Muro-Arena ◽  
M. Benisty ◽  
C. Ginski ◽  
C. Dominik ◽  
S. Facchini ◽  
...  

Context. Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly caused by an inclined (sub-)stellar companion embedded in the disk. Aims. We aim to study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. Methods. We obtained J- and H-band observations that show strong azimuthal asymmetries in polarized scattered light with VLT/SPHERE. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240 deg in position angle, in the east. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 and ~50 au. We created a simple four-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. Results. We find that the shadow on the outer disk covers a range of position angles too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones – or a continuously warped region – to cast this broad shadow on the outer disk. A small misalignment of ~4° between adjacent components can reproduce most of the observed shadow features. Conclusions. Multiple misaligned disk zones, potentially mimicking a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust-depleted gap responsible for a dip in the SED.


2020 ◽  
Vol 636 ◽  
pp. A14 ◽  
Author(s):  
Boy Lankhaar ◽  
Wouter Vlemmings

Context. Magnetic fields are important to the dynamics of many astrophysical processes and can typically be studied through polarization observations. Polarimetric interferometry capabilities of modern (sub)millimeter telescope facilities have made it possible to obtain detailed velocity resolved maps of molecular line polarization. To properly analyze these for the information they carry regarding the magnetic field, the development of adaptive three-dimensional polarized line radiative transfer models is necessary. Aims. We aim to develop an easy-to-use program to simulate the polarization maps of molecular and atomic (sub)millimeter lines in magnetized astrophysical regions, such as protostellar disks, circumstellar envelopes, or molecular clouds. Methods. By considering the local anisotropy of the radiation field as the only alignment mechanism, we can model the alignment of molecular or atomic species inside a regular line radiative transfer simulation by only making use of the converged output of this simulation. Calculations of the aligned molecular or atomic states can subsequently be used to ray trace the polarized maps of the three-dimensional simulation. Results. We present a three-dimensional radiative transfer code, POlarized Radiative Transfer Adapted to Lines (PORTAL), that can simulate the emergence of polarization in line emission through a magnetic field of arbitrary morphology. Our model can be used in stand-alone mode, assuming LTE excitation, but it is best used when processing the output of regular three-dimensional (nonpolarized) line radiative transfer modeling codes. We present the spectral polarization map of test cases of a collapsing sphere and protoplanetary disk for multiple three-dimensional magnetic field morphologies.


2020 ◽  
Vol 644 ◽  
pp. A4
Author(s):  
Grigorii V. Smirnov-Pinchukov ◽  
Dmitry A. Semenov ◽  
Vitaly V. Akimkin ◽  
Thomas Henning

Context. The widespread rings and gaps seen in the dust continuum in protoplanetary disks are sometimes accompanied by similar substructures seen in molecular line emission. One example is the outer gap at ~100 au in AS 209, which shows that the H13CO+ and C18O emission intensities decrease along with the continuum in the gap, while the DCO+ emission increases inside the gap. Aims. We aim to study the behavior of DCO+/H13CO+ and DCO+/HCO+ ratios in protoplanetary disk gaps assuming the two scenarios: (A) the gas depletion follows the dust depletion and (B) only the dust is depleted. Methods. We first modeled the physical disk structure using the thermo-chemical model ANDES. This 1+1D steady-state disk model calculates the thermal balance of gas and dust and includes the far ultraviolet, X-rays, cosmic rays, and other ionization sources together with the reduced chemical network for molecular coolants. Afterward, this physical structure was adopted for calculations of molecular abundances with the extended gas-grain chemical network with deuterium fractionation. Ideal synthetic spectra and 0th-moment maps were produced with the LIne Modeling Engine. Results. We are able to qualitatively reproduce the increase in the DCO+ intensity and the decrease in the H13CO+ and C18O intensities inside the disk gap, which is qualitatively similar to what is observed in the outer AS 209 gap. The corresponding disk model (A) assumes that both the gas and dust are depleted in the gap. The model (B) with the gas-rich gap, where only the dust is depleted, produces emission that is too bright in all HCO+ isotopologues and C18O. Conclusions. The DCO+/H13CO+ line ratio can be used to probe gas depletion in dust continuum gaps outside of the CO snow line. The DCO+/C18O line ratio shows a similar, albeit weaker, effect; however, these species can be observed simultaneously with a single (sub)mm interferometer setup.


Sign in / Sign up

Export Citation Format

Share Document