scholarly journals GALACTICNUCLEUS: A high angular resolution JHKs imaging survey of the Galactic centre

2018 ◽  
Vol 610 ◽  
pp. A83 ◽  
Author(s):  
F. Nogueras-Lara ◽  
A. T. Gallego-Calvente ◽  
H. Dong ◽  
E. Gallego-Cano ◽  
J. H. V. Girard ◽  
...  

Context. The Galactic centre (GC) is of fundamental astrophysical interest, but existing near-infrared surveys fall short covering it adequately, either in terms of angular resolution, multi-wavelength coverage, or both. Here we introduce the GALACTICNUCLEUS survey, a JHKs imaging survey of the centre of the Milky Way with a 0.2″ angular resolution. Aims. The purpose of this paper is to present the observations of Field 1 of our survey, centred approximately on SgrA* with an approximate size of 7.95′ × 3.43′. We describe the observational set-up and data reduction pipeline and discuss the quality of the data. Finally, we present the analysis of the data. Methods. The data were acquired with the near-infrared camera High Acuity Wide field K-band Imager (HAWK-I) at the ESO Very Large Telescope (VLT). Short readout times in combination with the speckle holography algorithm allowed us to produce final images with a stable, Gaussian PSF (point spread function) of 0.2″ FWHM (full width at half maximum). Astrometric calibration is achieved via the VISTA Variables in the Via Lactea (VVV) survey and photometric calibration is based on the SIRIUS/Infrared Survey Facility telescope (IRSF) survey. The quality of the data is assessed by comparison between observations of the same field with different detectors of HAWK-I and at different times. Results. We reach 5σ detection limits of approximately J = 22, H = 21, and Ks = 20. The photometric uncertainties are less than 0.05 at J ≲ 20, H ≲ 17, and Ks ≲ 16. We can distinguish five stellar populations in the colour-magnitude diagrams; three of them appear to belong to foreground spiral arms, and the other two correspond to high- and low-extinction star groups at the GC. We use our data to analyse the near-infrared extinction curve and find some evidence for a possible difference between the extinction index between J − H and H − Ks. However, we conclude that it can be described very well by a power law with an index of αJHKs = 2.30 ± 0.08. We do not find any evidence that this index depends on the position along the line of sight, or on the absolute value of the extinction. We produce extinction maps that show the clumpiness of the ISM (interstellar medium) at the GC. Finally, we estimate that the majority of the stars have solar or super-solar metallicity by comparing our extinction-corrected colour-magnitude diagrams with isochrones with different metallicities and a synthetic stellar model with a constant star formation.


2016 ◽  
Vol 11 (S322) ◽  
pp. 257-258
Author(s):  
Francisco Nogueras-Lara ◽  
Rainer Schödel

AbstractBecause of the unique observational challenges -extreme crowding and extinction- any existing large-scale near-infrared (NIR) imaging data on the Galactic Center (GC) are limited by either one, or a combination, of the following: saturation, lack of sensitivity, too low angular resolution, or lack of multi-wavelength coverage. To overcome this situation, we are currently carrying out a sensitive, 0.2” resolution JHK imaging survey of the Galactic Centre with HAWK-I/VLT. Thanks to holographic imaging, we achieve a similar resolution than with HST/WFC, but can cover also the long NIR, beyond 2 micrometers, which is essential to deal with extinction. Our survey is supported by an ESO Large Programme and will provide photometrically accurate (few percent uncertainty for H < 18 stars), high-angular resolution, NIR data for an area of several 1000 pc2, a more than ten-fold increase compared to the current state of affairs. Here we present an overview and first results.



2020 ◽  
Vol 641 ◽  
pp. A141
Author(s):  
F. Nogueras-Lara ◽  
R. Schödel ◽  
N. Neumayer ◽  
E. Gallego-Cano ◽  
B. Shahzamanian ◽  
...  

Context. The characterisation of the extinction curve in the near-infrared (NIR) is fundamental to analysing the structure and stellar population of the Galactic centre (GC), whose analysis is hampered by the extreme interstellar extinction (AV ~ 30 mag) that varies on arc-second scales. Recent studies indicate that the behaviour of the extinction curve might be more complex than previously assumed, pointing towards a variation of the extinction curve as a function of wavelength. Aims. We aim to analyse the variations of the extinction index, α, with wavelength, line-of-sight, and absolute extinction, extending previous analyses to a larger area of the innermost regions of the Galaxy. Methods. We analysed the whole GALACTICNUCLEUS survey, a high-angular resolution (~0.2″) JHKs NIR survey specially designed to observe the GC in unprecedented detail. It covers a region of ~6000 pc2, comprising fields in the nuclear stellar disc, the inner bulge, and the transition region between them. We applied two independent methods based on red clump (RC) stars to constrain the extinction curve and analysed its variation superseding previous studies. Results. We used more than 165 000 RC stars and increased the size of the regions analysed significantly to confirm that the extinction curve varies with the wavelength. We estimated a difference Δα = 0.21 ± 0.07 between the obtained extinction indices, αJH = 2.44 ± 0.05 and αHKs = 2.23 ± 0.05. We also concluded that there is no significant variation of the extinction curve with wavelength, with the line-of-sight or the absolute extinction. Finally, we computed the ratios between extinctions, AJ∕AH = 1.87 ± 0.03 and AH/AKs = 1.84 ± 0.03, consistent with all the regions of the GALACTICNUCLEUS catalogue.



2019 ◽  
Vol 631 ◽  
pp. A20 ◽  
Author(s):  
F. Nogueras-Lara ◽  
R. Schödel ◽  
A. T. Gallego-Calvente ◽  
H. Dong ◽  
E. Gallego-Cano ◽  
...  

Context. The high extinction and extreme source crowding of the central regions of the Milky Way are serious obstacles to the study of the structure and stellar population of the Galactic centre (GC). Existing surveys that cover the GC region (2MASS, UKIDSS, VVV, SIRIUS) do not have the necessary high angular resolution. Therefore, a high-angular-resolution survey in the near infrared is crucial to improve the state of the art. Aims. Here, we present the GALACTICNUCLEUS catalogue, a near infrared JHKs high-angular-resolution (0.2″) survey of the nuclear bulge of the Milky Way. Methods. We explain in detail the data reduction, data analysis, calibration, and uncertainty estimation of the GALACTICNUCLEUS survey. We assess the data quality comparing our results with previous surveys. Results. We obtained accurate JHKs photometry for ∼3.3 × 106 stars in the GC detecting around 20% in J, 65% in H, and 90% in Ks. The survey covers a total area of ∼0.3 deg2, which corresponds to ∼6000 pc2. The GALACTICNUCLEUS survey reaches 5σ detections for J ∼ 22 mag, H ∼ 21 mag, and Ks ∼ 21 mag. The uncertainties are below 0.05 mag at J ∼ 21 mag, H ∼ 19 mag, and Ks ∼ 18 mag. The zero point systematic uncertainty is ≲0.04 mag in all three bands. We present colour–magnitude diagrams for the different regions covered by the survey.



2018 ◽  
Vol 616 ◽  
pp. A55 ◽  
Author(s):  
S. Pipien ◽  
S. Basa ◽  
J.-G. Cuby ◽  
J.-C. Cuillandre ◽  
C. Willott ◽  
...  

Context. The Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) has been conducted over a 5-yr period at the CFHT with the MegaCam instrument, totaling 450 nights of observations. The Wide Synoptic Survey is one component of the CFHTLS, covering 155 square degrees in four patches of 23 to 65 square degrees through the whole MegaCam filter set (u*, g’, r’, i’, z’) down to i’AB = 24.5. Aims. With the motivation of searching for high-redshift quasars at redshifts above 6.5, we extend the multi-wavelength CFHTLS-Wide data in the Y -band down to magnitudes of ~22.5 for point sources (5σ). Methods. We observed the four CFHTLS-Wide fields (except one quarter of the W3 field) in the Y -band with the Wide-field InfraRed Camera (WIRCam) at the CFHT. Each field was visited twice, at least three weeks apart. Each visit consisted of two dithered exposures. The images are reduced with the Elixir software used for the CFHTLS and modified to account for the properties of near-InfraRed (IR) data. Two series of image stacks are subsequently produced: four-image stacks for each WIRCam pointing, and one-square-degree tiles matched to the format of the CFHTLS data release. Photometric calibration is performed on stars by fitting stellar spectra to their CFHTLS photometric data and extrapolating their Y -band magnitudes. Results. After corrections accounting for correlated noise, we measure a limiting magnitude of YAB ≃ 22.4 for point sources (5σ) in an aperture diameter of 0.′′93, over 130 square degrees. We produce a multi-wavelength catalogue combining the CFHTLS-Wide optical data with our CFHQSIR (Canada–France High-z quasar survey in the near-InfraRed) Y -band data. We derive the Y -band number counts and compare them to the Vista Deep Extragalactic Observations survey (VIDEO). We find that the addition of the CFHQSIR Y -band data to the CFHTLS optical data increases the accuracy of photometric redshifts and reduces the outlier rate from 13.8% to 8.8% in the redshift range 1.05 ≲ z ≲ 1.2.



2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were &gt;2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.



2018 ◽  
Vol 14 (S343) ◽  
pp. 456-457
Author(s):  
Foteini Lykou ◽  
Josef Hron ◽  
Daniela Klotz

AbstractRecent advances in high-angular resolution instruments (VLT and VLTI, ALMA) have enabled us to delve deep into the circumstellar envelopes of AGB stars from the optical to the sub-mm wavelengths, thus allowing us to study in detail the gas and dust formation zones (e.g., their geometry, chemistry and kinematics). This work focuses on four (4) C-rich AGB stars observed with a high-angular resolution technique in the near-infrared: a multi-wavelength tomographic study of the dusty layers of the circumstellar envelopes of these C-rich stars, i.e. the variations in the morphology and temperature distribution.



2021 ◽  
Author(s):  
Martin Burgdorf ◽  
Stefan A. Buehler ◽  
Viju John ◽  
Thomas Müller ◽  
Marc Prange

&lt;p&gt;Serendipitous observations of airless bodies of the inner solar system provide a unique means to the calibration of instruments on meteorological research satellites, because the physical properties of their surfaces change very little, even on large time scales. We investigated how certain instrumental effects can be characterised with observations of the Moon and Mercury. For this we identified and analysed intrusions of the Moon in the deep space views of HIRS/2, /3, and /4 (High-resolution Infrared Sounder) on various satellites in polar orbits and as well some images obtained with SEVIRI (Spinning Enhanced Visible Infra-Red Imager) on MSG-3 and -4 (Meteosat Second Generation), which had Mercury standing close to the Earth in the rectangular field of view.&lt;/p&gt;&lt;p&gt;A full-disk, infrared Moon model was developed that describes how the lunar flux density depends on phase angle and wavelength. It is particularly helpful for inter-calibration, checks of the photometric consistency of the sounding channels, and the calculation of an upper limit on the non-linearity of the shortwave channels of HIRS. In addition, we used the Moon to determine the co-registration of the different spectral channels.&lt;/p&gt;&lt;p&gt;Studies of the channel alignment are also presented for SEVIRI, an infrared sounder with an angular resolution about a hundred times better than HIRS. As we wanted to check the image quality of this instrument with a quasi-point source as well, we replaced here the Moon with Mercury. We found the typical smearing of the point spread function in the scan direction and occasionally a nearby ghost image, which is three to four times fainter than the main image of the planet. Both effects cause additional uncertainties of the photometric calibration. &amp;#160;&lt;/p&gt;





2019 ◽  
Vol 626 ◽  
pp. L2 ◽  
Author(s):  
S. Facchini ◽  
E. F. van Dishoeck ◽  
C. F. Manara ◽  
M. Tazzari ◽  
L. Maud ◽  
...  

The large majority of protoplanetary disks have very compact continuum emission (≲15 AU) at millimeter wavelengths. However, high angular resolution observations that resolve these small disks are still lacking, due to their intrinsically fainter emission compared with large bright disks. In this Letter we present 1.3 mm ALMA data of the faint disk (∼10 mJy) orbiting the TTauri star CX Tau at a resolution of ∼40 mas, ∼5 AU in diameter. The millimeter dust disk is compact, with a 68% enclosing flux radius of 14 AU, and the intensity profile exhibits a sharp drop between 10 and 20 AU, and a shallow tail between 20 and 40 AU. No clear signatures of substructure in the dust continuum are observed, down to the same sensitivity level of the DSHARP large program. However, the angular resolution does not allow us to detect substructures on the scale of the disk aspect ratio in the inner regions. The radial intensity profile closely resembles the inner regions of more extended disks imaged at the same resolution in DSHARP, but with no rings present in the outer disk. No inner cavity is detected, even though the disk has been classified as a transition disk from the spectral energy distribution in the near-infrared. The emission of 12CO is much more extended, with a 68% enclosing flux radius of 75 AU. The large difference of the millimeter dust and gas extents (> 5) strongly points to radial drift, and closely matches the predictions of theoretical models.



Sign in / Sign up

Export Citation Format

Share Document