scholarly journals A new compact young moving group around V1062 Scorpii

2018 ◽  
Vol 614 ◽  
pp. A81 ◽  
Author(s):  
Siegfried Röser ◽  
Elena Schilbach ◽  
Bertrand Goldman ◽  
Thomas Henning ◽  
Attila Moor ◽  
...  

Aims. We are searching for new open clusters or moving groups in the solar neighbourhood. Methods. We used the Gaia-TGAS catalogue, cut it into narrow proper motion and parallax slices and searched for significant spatial over-densities of stars in each slice. We then examined stars forming over-densities in optical and near-infrared colour-magnitude diagrams to determine if they are compatible with isochrones of a cluster. Results. We detected a hitherto unknown moving group or cluster in the Upper Centaurus Lupus (UCL) section of the Scorpius-Centaurus OB association (Sco-Cen) at a distance of 175 pc from the Sun. It is a group of 63 comoving stars of less than 10 to about 25 Myr in age. For the brightest stars that are present in the Gaia-TGAS catalogue, the mean difference between kinematic and trigonometric distance moduli is − 0.01 mag with a standard deviation of 0.11 mag. Fainter cluster candidates are found in the HSOY catalogue, where no trigonometric parallaxes are available. For a subset of our candidate stars, we obtained radial velocity measurements at the MPG/ESO 2.2 m telescope in La Silla. Altogether we found 12 members with confirmed radial velocities and parallaxes, 31 with parallaxes or radial velocities, and 20 candidates from the convergent point method. The isochrone masses of our 63 members range from 2.6 to 0.7 M⊙.

1986 ◽  
Vol 118 ◽  
pp. 273-274
Author(s):  
G. Burki

The relation existing between the radius and the period for the pulsating stars of a given class constitutes a powerful test for the theory of stellar evolution and for the identification of the pulsation modes. In recent years, several authors have determined the mean radius of a lot of pulsating stars of various classes by applying the Baade-Wesselink method. Fig. 1 presents the resulting general logP - logR diagram grouping these determinations. The sources for the radii are given by Burki and Meylan (1986). The variable stars in known binaries have been excluded since the presence of a companion biases the radius calculation (Burki, 1984). The determinations marked by arrows are based on the radial velocities by CORAVEL (1m telescope at the Haute-Provence Observatory, France) or/and on the photometry in the Geneva system (40cm and 70cm telescopes at La Silla Observatory, Chile).


1970 ◽  
Vol 7 ◽  
pp. 74-76
Author(s):  
A. N. Deutsch

The determination of secular parallaxes of stars is usually based on meridian observations of proper motions of bright stars, this introducing known systematic errors. The mean parallaxes of stars can be obtained by means of radial velocities which are known for the bright stars. The more perspective method, the reference of stars to galaxies, is not applicable at low galactic latitudes.


2018 ◽  
Vol 620 ◽  
pp. A97 ◽  
Author(s):  
M. Salz ◽  
S. Czesla ◽  
P. C. Schneider ◽  
E. Nagel ◽  
J. H. M. M. Schmitt ◽  
...  

We present three transit observations of HD 189733 b obtained with the high-resolution spectrograph CARMENES at Calar Alto. A strong absorption signal is detected in the near-infrared He I triplet at 10830 Å in all three transits. During mid-transit, the mean absorption level is 0.88 ± 0.04% measured in a ±10 km s−1 range at a net blueshift of − 3.5 ± 0.4 km s−1 (10829.84–10830.57 Å). The absorption signal exhibits radial velocities of + 6.5 ± 3.1 km s−1 and − 12.6 ± 1.0 km s−1 during ingress and egress, respectively; all radial velocities are measured in the planetary rest frame. We show that stellar activity related pseudo-signals interfere with the planetary atmospheric absorption signal. They could contribute as much as 80% of the observed signal and might also affect the observed radial velocity signature, but pseudo-signals are very unlikely to explain the entire signal. The observed line ratio between the two unresolved and the third line of the He I triplet is 2.8 ± 0.2, which strongly deviates from the value expected for an optically thin atmospheres. When interpreted in terms of absorption in the planetary atmosphere, this favors a compact helium atmosphere with an extent of only 0.2 planetary radii and a substantial column density on the order of 4 × 1012 cm−2. The observed radial velocities can be understood either in terms of atmospheric circulation with equatorial superrotation or as a sign of an asymmetric atmospheric component of evaporating material. We detect no clear signature of ongoing evaporation, like pre- or post-transit absorption, which could indicate material beyond the planetary Roche lobe, or radial velocities in excess of the escape velocity. These findings do not contradict planetary evaporation, but only show that the detected helium absorption in HD 189733 b does not trace the atmospheric layers that show pronounced escape signatures.


2015 ◽  
Vol 10 (S314) ◽  
pp. 71-72
Author(s):  
D. Montes ◽  
J. A. Caballero ◽  
I. Gallardo ◽  
M. Cortés-Contreras ◽  
F. J. Alonso-Floriano

AbstractWe present a detailed study of the kinematics of M dwarfs in the CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) input catalog. We have selected all M dwarfs with known parallactic distance or a good photometric distance estimation, precise proper motion in the literature or as determined by us, and radial velocity measurements. Using these parameters, we computed the M dwarfs galactic space motions (U, V, W). For the stars with U and V velocity components inside or near the boundaries that determine the young disk population, we have analyzed the possible membership in the classical moving groups and nearby loose associations with ages between 10 and 600 Myr. For the candidate members, we have compiled information available in the literature in order to constrain their membership by applying other age-dating methods.


1999 ◽  
Vol 170 ◽  
pp. 77-81 ◽  
Author(s):  
Søren Madsen ◽  
Lennart Lindegren ◽  
Dainis Dravins

AbstractWe discuss non-spectroscopic (astrometric) ways to determine radial velocities and their potentials in future astrometric missions. Radial-velocity accuracies are presented, based on Hipparcos parallax and proper motion data for several open clusters.


2008 ◽  
Vol 4 (S253) ◽  
pp. 157-161 ◽  
Author(s):  
James P. Lloyd ◽  
Agnieszka Czeszumska ◽  
Jerry Edelstein ◽  
David Erskine ◽  
Michael Feuerstein ◽  
...  

AbstractThe TEDI (TripleSpec - Exoplanet Discovery Instrument) is a dedicated instrument for the near-infrared radial velocity search for planetary companions to low-mass stars with the goal of achieving meters-per-second radial velocity precision. Heretofore, such planet searches have been limited almost entirely to the optical band and to stars that are bright in this band. Consequently, knowledge about planetary companions to the populous but visibly faint low-mass stars is limited. In addition to the opportunity afforded by precision radial velocity searches directly for planets around low mass stars, transits around the smallest M dwarfs offer a chance to detect the smallest possible planets in the habitable zones of the parent stars. As has been the the case with followup of planet candidates detected by the transit method requiring radial velocity confirmation, the capability to undertake efficient precision radial velocity measurements of mid-late M dwarfs will be required. TEDI has been commissioned on the Palomar 200” telescope in December 2007, and is currently in a science verification phase.


1998 ◽  
Vol 11 (1) ◽  
pp. 564-564
Author(s):  
D. Gullberg ◽  
D. Dravins

Wavelengths of stellar spectral lines depend not only on the star’s motion. Until recently, accurate studies of shifts not caused by radial motion were feasible only for the Sun. Solar lineshifts are interpreted as gravitational redshift (636 m/s) and convective blueshifts (~ 400 m/s; caused by velocity-brightness correlations). In other stars, such effects may be greater (Dravins & Nordlund 1990). Accurate astrometric radial velocities are now available from Hipparcos (Dravins et al. 1997a; 1997b), permitting studies of such shifts also in some other stars. For such stars in the open clusters of Hyades, Ursa Major and Coma Berenices, a spectroscopic program is in progress, analyzing wavelength shifts in groups of lines with different strengths, excitation potentials, etc., using the ELODIE high-precision radial-velocity instrument (Baranne et al. 1996) at Haute-Provence Observatory.


2020 ◽  
Vol 637 ◽  
pp. A45
Author(s):  
R.-D. Scholz

Aims. The Gaia data release 2 (DR2) contains > 6000 objects with parallaxes (Plx + 3 × e_Plx) > 50 mas, placing them within 20 pc from the Sun. Because the expected numbers based on extrapolating the well-known 10 pc census are much lower, nearby Gaia stars need a quality assessment. The 20 pc sample of white dwarfs (WDs) has been verified and completed with Gaia DR2. We here confirm and complete the 20 pc sample of ultracool dwarfs (UCDs) with spectral types ≳M7 and given Gaia DR2 parallaxes. Methods. Dividing the Gaia DR2 20 pc sample into subsamples of various astrometric and photometric quality, we studied their distribution on the sky, in the MG versus G − RP colour-magnitude diagram (CMD), and as a function of G magnitude and total proper motion. After excluding 139 known WDs and 263 known UCDs from the CMD, we checked all remaining ≈3500 candidates with MG >  14 mag (used to define UCDs in this study) for the correctness of their Gaia DR2 proper motions by visual inspection of finder charts, comparison with proper motion catalogues, and comparison with our own proper motion measurements. For confirmed UCD candidates we estimated spectral types photometrically using Gaia and near-infrared absolute magnitudes and colours. Results. We failed to confirm new WDs, but found 50 new UCD candidates that are not mentioned in three previous studies using Gaia DR2. They have relatively small proper motions and low tangential velocities and are concentrated towards the Galactic plane. Half of them have spectral types in SIMBAD and/or previous non-Gaia distance estimates that placed them already within 20 pc. For 20 of the 50 objects, we estimated photometric spectral types of M6−M6.5, slightly below the classical UCD spectral type limit. However, seven L4.5−L6.5, four L0−L1, five M8.5−M9.5, and three M7−M8 dwarfs can be considered as completely new UCDs discoveries within 20 pc based on Gaia DR2. Four M6.5 and two L4.5 dwarfs have high membership probabilities (64%−99%) in the ARGUS, AB Doradus, or Carina Near young moving groups.


2014 ◽  
Vol 14 (16) ◽  
pp. 22837-22879 ◽  
Author(s):  
S. Steinke ◽  
S. Eikenberg ◽  
U. Löhnert ◽  
G. Dick ◽  
D. Klocke ◽  
...  

Abstract. The spatio-temporal variability of integrated water vapour (IWV) on small-scales of less than 10 km and hours is assessed with data from the two months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of standard deviation (≤ 1 kg m−2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON) which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3–4 km or time of 10–15 min induce IWV variabilities in the order of 4 kg m−2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m−2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is sufficient to capture the mean standard deviation of IWV. The present study shows that instrument sampling plays a major role when climatological information, in particular the mean diurnal cycle of IWV, is determined.


2009 ◽  
Vol 5 (S266) ◽  
pp. 385-385
Author(s):  
Wilton S. Dias ◽  
Thiago Costa Caetano

AbstractWe constructed a program that allows one to use simultaneously and interactively photometric and astrometric stellar data (proper motion) to analyse color–color and color–magnitude diagrams. With this program, we are able to determine, based on photometric membership, the distance and age as well as the mean proper motion and radial velocity of several open clusters which had very uncertain parameters in previous analyses.


Sign in / Sign up

Export Citation Format

Share Document