scholarly journals SPOTS: The Search for Planets Orbiting Two Stars

2018 ◽  
Vol 619 ◽  
pp. A43 ◽  
Author(s):  
R. Asensio-Torres ◽  
M. Janson ◽  
M. Bonavita ◽  
S. Desidera ◽  
C. Thalmann ◽  
...  

Binary stars constitute a large percentage of the stellar population, yet relatively little is known about the planetary systems orbiting them. Most constraints on circumbinary planets (CBPs) so far come from transit observations with the Kepler telescope, which is sensitive to close-in exoplanets but does not constrain planets on wider orbits. However, with continuous developments in high-contrast imaging techniques, this population can now be addressed through direct imaging. We present the full survey results of the Search for Planets Orbiting Two Stars (SPOTS) survey, which is the first direct imaging survey targeting CBPs. The SPOTS observational program comprises 62 tight binaries that are young and nearby, and thus suitable for direct imaging studies, with VLT/NaCo and VLT/SPHERE. Results from SPOTS include the resolved circumbinary disk around AK Sco, the discovery of a low-mass stellar companion in a triple packed system, the relative astrometry of up to 9 resolved binaries, and possible indications of non-background planetary-mass candidates around HIP 77911. We did not find any CBP within 300 AU, which implies a frequency upper limit on CBPs (1–15 MJup) of 6–10% between 30–300 AU. Coupling these observations with an archival dataset for a total of 163 stellar pairs, we find a best-fit CBP frequency of 1.9% (2–15 MJup) between 1 and 300 AU with a 10.5% upper limit at a 95% confidence level. This result is consistent with the distribution of companions around single stars.

2011 ◽  
Vol 7 (S282) ◽  
pp. 181-188
Author(s):  
Sasha Hinkley

AbstractThe current direct observations of brown dwarfs and exoplanets have been obtained using instruments not specifically designed for overcoming the large contrast ratio between the host star and any wide-separation faint companions. However, we are about to witness the birth of several new dedicated observing platforms specifically geared towards high contrast imaging of these objects. The Gemini Planet Imager, VLT-SPHERE, Subaru HiCIAO, and Project 1640 at the Palomar 5m telescope will return images of numerous exoplanets and brown dwarfs over hundreds of observing nights in the next five years. Along with diffraction-limited coronagraphs and high-order adaptive optics, these instruments also will return spectral and polarimetric information on any discovered targets, giving clues to their atmospheric compositions and characteristics. Such spectral characterization will be key to forming a detailed theory of comparative exoplanetary science which will be widely applicable to both exoplanets and brown dwarfs. Further, the prevalence of aperture masking interferometry in the field of high contrast imaging is also allowing observers to sense massive, young planets at solar system scales (~3–30 AU)— separations out of reach to conventional direct imaging techniques. Such observations can provide snapshots at the earliest phases of planet formation—information essential for constraining formation mechanisms as well as evolutionary models of planetary mass companions. As a demonstration of the power of this technique, I briefly review recent aperture masking observations of the HR 8799 system. Moreover, all of the aforementioned techniques are already extremely adept at detecting low-mass stellar companions to their target stars, and I present some recent highlights.


Author(s):  
Eduardo Bendek ◽  
Ruslan Belikov ◽  
Dan Sirbu ◽  
Garreth Ruane ◽  
A. J. Eldorado Riggs ◽  
...  

2018 ◽  
Vol 14 (S345) ◽  
pp. 316-317 ◽  
Author(s):  
M. Mugrauer ◽  
C. Ginski ◽  
N. Vogt ◽  
R. Neuhäuser ◽  
C. Adam

AbstractIn order to determine the true impact of stellar multiplicity on the formation and evolution of planets, we initiated direct imaging surveys to search for (sub)stellar companions of exoplanet host stars on close orbits, as their gravitational impact on the planet bearing disk at first and on formed planets afterwards is expected to be maximal. According to theory these are the most challenging environments for planet formation and evolution but might occur quite frequently in the milky way, due to the large number of multiple stars within our galaxy. On this poster we showed results, obtained so far in the course of our AO and Lucky-imaging campaigns of exoplanet host stars, conducted with NACO/ESO-VLT for southern and with AstraLux/CAHA2.2m for northern targets, respectively. In addition, we introduced our new high contrast imaging survey with SPHERE/ESO-VLT to search for close companions of southern exoplanet host stars, and presented some first results.


2013 ◽  
Vol 8 (S299) ◽  
pp. 1-11 ◽  
Author(s):  
Beth Biller

AbstractThe last decade has yielded the first images of exoplanets, considerably advancing our understanding of the properties of young giant planets. In this talk I will discuss current results from ongoing direct imaging efforts as well as future prospects for detection and characterization of exoplanets via high contrast imaging. Direct detection, and direct spectroscopy in particular, have great potential for advancing our understanding of extrasolar planets. In combination with other methods of planet detection, direct imaging and spectroscopy will allow us to eventually: 1) study the physical properties of exoplanets (colors, temperatures, etc.) in depth and 2) fully map out the architecture of typical planetary systems. Direct imaging has offered us the first glimpse into the atmospheric properties of young high-mass (3-10 MJup) exoplanets. Deep direct imaging surveys for exoplanets have also yielded the strongest constraints to date on the statistical properties of wide giant exoplanets. A number of extremely high contrast exoplanet imaging instruments have recently come online or will come online within the next year (including Project 1640, SCExAO, SPHERE, GPI, among others). I will discuss future prospects with these instruments.


2020 ◽  
Vol 640 ◽  
pp. A15
Author(s):  
A. Rainot ◽  
M. Reggiani ◽  
H. Sana ◽  
J. Bodensteiner ◽  
C. A. Gomez-Gonzalez ◽  
...  

Context. Massive stars like company. However, low-mass companions have remained extremely difficult to detect at angular separations (ρ) smaller than 1″ (approx. 1000–3000 au, considering the typical distance to nearby massive stars) given the large brightness contrast between the companion and the central star. Constraints on the low-mass end of the companions mass-function for massive stars are needed, however, for helping, for example, to distinguish among the various scenarios that describe the formation of massive stars. Aims. With the aim of obtaining a statistically significant constraint on the presence of low-mass companions beyond the typical detection limit of current surveys (Δmag ≲ 5 at ρ ≲ 1″), we initiated a survey of O and Wolf-Rayet stars in the Carina region using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) coronagraphic instrument on the Very Large Telescope (VLT). In this, the first paper of the series, we aim to introduce the survey, to present the methodology and to demonstrate the capability of SPHERE for massive stars using the multiple system QZ Car. Methods. We obtained VLT-SPHERE snapshot observations in the IRDIFS_EXT mode, which combines the IFS and IRDIS sub-systems and simultaneously provides us four-dimensional (4D) data cubes in two different fields-of-view: 1.73″ × 1.73″ for IFS (39 spectral channels across the YJH bands) and 12″ × 12″ for IRDIS (two spectral channels across the K band). Angular- and spectral-differential imaging techniques as well as PSF-fitting were applied to detect and measure the relative flux of the companions in each spectral channel. The latter were then flux-calibrated using theoretical SED models of the central object and compared to a grid of ATLAS9 atmosphere model and (pre-)main-sequence evolutionary tracks, providing a first estimate of the physical properties of the detected companions. Results. Detection limits of 9 mag at ρ >  200 mas for IFS, and as faint as 13 mag at ρ > 1.​″8 for IRDIS (corresponding to sub-solar masses for potential companions), can be reached in snapshot observations of only a few minutes integration times, allowing us to detect 19 sources around the QZ Car system. All but two are reported here for the first time. With near-IR magnitude contrasts in the range of 4 to 7.5 mag, the three brightest sources (Ab, Ad, and E) are most likely to be physically bound. They have masses in the range of 2 to 12 M⊙ and are potentially co-eval with QZ Car central system. The remaining sources have flux contrast of 1.5 × 105 to 9.5 × 106 (ΔK ≈ 11 to 13 mag). Their presence can be explained by the local source density and they are, thus, likely to be chance alignments. If they were members of the Carina nebula, they would be sub-solar-mass pre-main sequence stars. Conclusions. Based on this proof of concept, we show that the VLT/SPHERE allows us to reach the sub-solar mass regime of the companion mass function. It paves the way for this type of observation with a large sample of massive stars to provide novel constraints on the multiplicity of massive stars in a region of the parameter space that has remained inaccessible so far.


2019 ◽  
Vol 625 ◽  
pp. A17 ◽  
Author(s):  
R. F. Díaz ◽  
X. Delfosse ◽  
M. J. Hobson ◽  
I. Boisse ◽  
N. Astudillo-Defru ◽  
...  

Periodic radial velocity variations in the nearby M-dwarf star Gl 411 are reported, based on measurements with the SOPHIE spectrograph. Current data do not allow us to distinguish between a 12.95-day period and its one-day alias at 1.08 days, but favour the former slightly. The velocity variation has an amplitude of 1.6 m s−1, making this the lowest-amplitude signal detected with SOPHIE up to now. We have performed a detailed analysis of the significance of the signal and its origin, including extensive simulations with both uncorrelated and correlated noise, representing the signal induced by stellar activity. The signal is significantly detected, and the results from all tests point to its planetary origin. Additionally, the presence of an additional acceleration in the velocity time series is suggested by the current data. On the other hand, a previously reported signal with a period of 9.9 days, detected in HIRES velocities of this star, is not recovered in the SOPHIE data. An independent analysis of the HIRES dataset also fails to unveil the 9.9-day signal. If the 12.95-day period is the real one, the amplitude of the signal detected with SOPHIE implies the presence of a planet, called Gl 411 b, with a minimum mass of around three Earth masses, orbiting its star at a distance of 0.079 AU. The planet receives about 3.5 times the insolation received by Earth, which implies an equilibrium temperature between 256 and 350 K, and makes it too hot to be in the habitable zone. At a distance of only 2.5 pc, Gl 411 b, is the third closest low-mass planet detected to date. Its proximity to Earth will permit probing its atmosphere with a combination of high-contrast imaging and high-dispersion spectroscopy in the next decade.


2015 ◽  
Vol 10 (S314) ◽  
pp. 213-219
Author(s):  
G. Chauvin

AbstractWith the development of high contrast imaging techniques and instruments, vast efforts have been devoted during the past decades to detect and characterize lighter, cooler and closer companions to nearby stars, and ultimately image new planetary systems. Complementary to other planet-hunting techniques, this approach has opened a new astrophysical window to study the physical properties and the formation mechanisms of brown dwarfs and planets. In this review, I will briefly describe the different observing techniques and strategies used, the main samples of targeted nearby stars, finally the main results obtained so far about exoplanet discoveries characterization of their physical properties, and study of their occurrence and possible formation and evolution mechanisms.


2018 ◽  
Vol 613 ◽  
pp. A25 ◽  
Author(s):  
X. Bonfils ◽  
N. Astudillo-Defru ◽  
R. Díaz ◽  
J.-M. Almenara ◽  
T. Forveille ◽  
...  

The combination of high-contrast imaging and high-dispersion spectroscopy, which has successfully been use to detect the atmosphere of a giant planet, is one of the most promising potential probes of the atmosphere of Earth-size worlds. The forthcoming generation of extremely large telescopes (ELTs) may obtain sufficient contrast with this technique to detect O2 in the atmosphere of those worlds that orbit low-mass M dwarfs. This is strong motivation to carry out a census of planets around cool stars for which habitable zones can be resolved by ELTs, i.e. for M dwarfs within ~5 parsec. Our HARPS survey has been a major contributor to that sample of nearby planets. Here we report on our radial velocity observations of Ross 128 (Proxima Virginis, GJ447, HIP 57548), an M4 dwarf just 3.4 parsec away from our Sun. This source hosts an exo-Earth with a projected mass m sini = 1.35 M⊕ and an orbital period of 9.9 days. Ross 128 b receives less than 1.5 times as much flux as Earth from the Sun and its equilibrium ranges in temperature between 269 K for an Earth-like albedo and 213 K for a Venus-like albedo. Recent studies place it close to the inner edge of the conventional habitable zone. An 80-day long light curve from K2 campaign C01 demonstrates that Ross 128 b does not transit. Together with the All Sky Automated Survey (ASAS) photometry and spectroscopic activity indices, the K2 photometry shows that Ross 128 rotates slowly and has weak magnetic activity. In a habitability context, this makes survival of its atmosphere against erosion more likely. Ross 128 b is the second closest known exo-Earth, after Proxima Centauri b (1.3 parsec), and the closest temperate planet known around a quiet star. The 15 mas planet-star angular separation at maximum elongation will be resolved by ELTs (>3λ∕D) in the optical bands of O2.


2013 ◽  
Vol 8 (S299) ◽  
pp. 204-207 ◽  
Author(s):  
P. Kalas ◽  
J. R. Graham ◽  
M. P. Fitzgerald ◽  
M. Clampin

AbstractHigh contrast imaging observations with the Hubble Space Telescope show that the nearby star Fomalhaut is surrounded by a dusty debris belt and a candidate planet, Fomalhaut b, located just inside the edge of the belt. Fomalhaut b has unexpected characteristics, such as a relatively blue spectrum, leading to the hypothesis that the detected object is a low-mass planet hosting a giant planetary dust ring or cloud seen in reflected light. Here we present new HST/STIS observations made in 2010 and 2012 that authenticate the existence of Fomalhaut b. Our MCMC analysis of four epochs of astrometry spread over eight years indicate that the orbit has a~170 AU and e~0.85. Fomalhaut b's orbit is apsidally aligned with the main belt, and periapse is located approximately ~30 AU south of the star. We also show the existence of a ~50 AU wide azimuthal dust depletion in the dust belt. These new findings provide a revised picture of Fomalhaut as a dynamically complex system, where the orbit of Fomalhaut b and the belt structure signify the presence of additional massive planets orbiting the star.


Sign in / Sign up

Export Citation Format

Share Document