scholarly journals PÉGASE.3: A code for modeling the UV-to-IR/submm spectral and chemical evolution of galaxies with dust

2019 ◽  
Vol 623 ◽  
pp. A143 ◽  
Author(s):  
Michel Fioc ◽  
Brigitte Rocca-Volmerange

A code computing consistently the evolution of stars, gas and dust, as well as the energy they radiate, is required to derive reliably the history of galaxies by fitting synthetic spectral energy distributions (SEDs) to multiwavelength observations. The new code PÉGASE.3 described in this paper extends to the far-infrared/submillimeter the ultraviolet-to-near-infrared modeling provided by previous versions of PÉGASE. It first computes the properties of single stellar populations at various metallicities. It then follows the evolution of the stellar light of a galaxy and the abundances of the main metals in the interstellar medium (ISM), assuming some scenario of mass assembly and star formation. It simultaneously calculates the masses of the various grain families, the optical depth of the galaxy and the attenuation of the SED through the diffuse ISM in spiral and spheroidal galaxies, using grids of radiative transfer precomputed with Monte Carlo simulations taking scattering into account. The code determines the mean radiation field and the temperature probability distribution of stochastically heated individual grains. It then sums up their spectra to yield the overall emission by dust in the diffuse ISM. The nebular emission of the galaxy is also computed, and a simple modeling of the effects of dust on the SED of star-forming regions is implemented. The main outputs are ultraviolet-to-submillimeter SEDs of galaxies from their birth up to 20 Gyr, colors, masses of galactic components, ISM abundances of metallic elements and dust species, supernova rates. The temperatures and spectra of individual grains are also available. The paper discusses several of these outputs for a scenario representative of Milky Way-like spirals. PÉGASE.3 is fully documented and its Fortran 95 source files are public. The code should be especially useful for cosmological simulations and to interpret future mid- and far-infrared data, whether obtained by JWST, LSST, Euclid or e-ELT.

2011 ◽  
Vol 7 (S284) ◽  
pp. 97-100
Author(s):  
George J. Bendo ◽  

AbstractWe use Herschel Space Observatory and Spitzer Space Telescope 70-500 μm data along with ground-based optical and near-infrared data to understand how dust heating in the nearby face-on spiral galaxies M81, M83, and NGC 2403 is affected by the starlight from all stars and by the radiation from star-forming regions. We find that 70/160 μm flux density ratios tend to be more strongly influenced by star-forming regions. However, the 250/350 and 350/500 μm micron flux density ratios are more strongly affected by the light from the total stellar populations, suggesting that the dust emission at > 250 μm originates predominantly from a component that is colder than the dust seen at <160 μm and that is relatively unaffected by star formation activity. We conclude by discussing the implications of this for modelling the spectral energy distributions of both nearby and more distant galaxies and for using far-infrared dust emission to trace star formation.


2020 ◽  
Vol 494 (2) ◽  
pp. 2823-2838 ◽  
Author(s):  
Ana Trčka ◽  
Maarten Baes ◽  
Peter Camps ◽  
Sharon E Meidt ◽  
James Trayford ◽  
...  

ABSTRACT We compare the spectral energy distributions (SEDs) and inferred physical properties for simulated and observed galaxies at low redshift. We exploit UV-submillimetre mock fluxes of ∼7000 z = 0 galaxies from the EAGLE suite of cosmological simulations, derived using the radiative transfer code skirt. We compare these to ∼800 observed galaxies in the UV-submillimetre range, from the DustPedia sample of nearby galaxies. To derive global properties, we apply the SED fitting code cigale consistently to both data sets, using the same set of ∼80 million models. The results of this comparison reveal overall agreement between the simulations and observations, both in the SEDs and in the derived physical properties, with a number of discrepancies. The optical and far-infrared regimes, and the scaling relations based upon the global emission, diffuse dust, and stellar mass, show high levels of agreement. However, the mid-infrared fluxes of the EAGLE galaxies are overestimated while the far-UV domain is not attenuated enough, compared to the observations. We attribute these discrepancies to a combination of galaxy population differences between the samples and limitations in the subgrid treatment of star-forming regions in the EAGLE-skirt post-processing recipe. Our findings show the importance of detailed radiative transfer calculations and consistent comparison, and provide suggestions for improved numerical models.


2020 ◽  
Vol 642 ◽  
pp. A155 ◽  
Author(s):  
L. Zhou ◽  
D. Elbaz ◽  
M. Franco ◽  
B. Magnelli ◽  
C. Schreiber ◽  
...  

Thanks to its outstanding angular resolution, the Atacama Large Millimeter/submillimeter Array (ALMA) has recently unambiguously identified a population of optically dark galaxies with redshifts greater than z = 3, which play an important role in the cosmic star formation in massive galaxies. In this paper we study the properties of the six optically dark galaxies detected in the 69 arcmin2 GOODS-ALMA 1.1 mm continuum survey. While none of them are listed in the deepest H-band based CANDELS catalog in the GOODS-South field down to H = 28.16 AB, we were able to de-blend two of them from their bright neighbor and measure an H-band flux for them. We present the spectroscopic scan follow-up of five of the six sources with ALMA band 4. All are detected in the 2 mm continuum with signal-to-noise ratios higher than eight. One emission line is detected in AGS4 (νobs = 151.44 GHz with an S/N = 8.58) and AGS17 (νobs = 154.78 GHz with an S/N = 10.23), which we interpret in both cases as being due to the CO(6–5) line at zspecAGS4 = 3.556 and zspecAGS17 = 3.467, respectively. These redshifts match both the probability distribution of the photometric redshifts derived from the UV to near-infrared spectral energy distributions (SEDs) and the far-infrared SEDs for typical dust temperatures of galaxies at these redshifts. We present evidence that nearly 70% (4/6 of galaxies) of the optically dark galaxies belong to the same overdensity of galaxies at z ∼ 3.5. overdensity The most massive one, AGS24 (M⋆ = 1011.32−0.19+0.02 M⊙), is the most massive galaxy without an active galactic nucleus at z > 3 in the GOODS-ALMA field. It falls in the very center of the peak of the galaxy surface density, which suggests that the surrounding overdensity is a proto-cluster in the process of virialization and that AGS24 is the candidate progenitor of the future brightest cluster galaxy.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2014 ◽  
Vol 10 (S309) ◽  
pp. 169-170
Author(s):  
C. C. Thöne ◽  
L. Christensen ◽  
J. Gorosabel ◽  
A. de Ugarte Postigo

AbstractThe late-type spiral NGC 2770 hosted 3 Type Ib supernovae (SNe) in or next to star-forming regions in its outer spiral arms. We study the properties of the SN sites and the galaxy at different spatial resolutions to infer propeties of the SN progenitors and the SF history of the galaxy. Several 3D techniques are used and, for the first time, we present images of metallicity, shocks and stellar population ages from OSIRIS/GTC imaging with tunable narrowband filters.


2020 ◽  
Vol 635 ◽  
pp. A119 ◽  
Author(s):  
Chian-Chou Chen ◽  
C. M. Harrison ◽  
I. Smail ◽  
A. M. Swinbank ◽  
O. J. Turner ◽  
...  

By using data from the Atacama Large Millimeter/submillimeter Array and near-infrared (NIR) integral field spectrographs, including both Spectrograph for INtegral Field Observations in the Near Infrared and K-band Multi Object Spectrograph on the Very Large Telescope, we investigate the two-dimensional distributions of Hα and rest-frame far-infrared (FIR) continuum in six submillimeter galaxies (SMGs) at z ∼ 2. At a similar spatial resolution (∼0.″5 FWHM; ∼4.5 kpc at z = 2), we find that the half-light radius of Hα is significantly larger than that of the FIR continuum in half of the sample, and on average Hα is a median factor of 2.0 ± 0.4 larger. Having explored various ways to correct for the attenuation, we find that the attenuation-corrected Hα-based star-formation rates (SFRs) are systematically lower than the infrared (IR)-based SFRs by at least a median factor of 3 ± 1, which cannot be explained by the difference in half-light radius alone. In addition, we find that in 40% of cases the total V-band attenuation (AV) derived from energy balance modeling of the full ultraviolet (UV)-to-FIR spectral energy distributions (SEDs) is significantly higher than what is derived from SED modeling using only the UV-to-NIR part of the SEDs, and the discrepancy appears to increase with increasing total infrared luminosity. Finally, in considering all of our findings along with the studies in the literature, we postulate that the dust distributions in SMGs, and possibly also in less IR luminous z ∼ 2 massive star-forming galaxies, can be decomposed into the following three main components: the diffuse dust heated by older stellar populations, the more obscured and extended young star-forming H II regions, and the heavily obscured central regions that have a low filling factor but dominate the infrared luminosity in which the majority of attenuation cannot be probed via UV-to-NIR emissions.


2020 ◽  
Vol 500 (1) ◽  
pp. 118-137
Author(s):  
A Zanella ◽  
A Pallottini ◽  
A Ferrara ◽  
S Gallerani ◽  
S Carniani ◽  
...  

ABSTRACT We investigate the spatially resolved morphology of galaxies in the early Universe. We consider a typical redshift z = 6 Lyman break galaxy, ‘Althæa’, from the SERRA hydrodynamical simulations. We create mock rest-frame ultraviolet (UV), optical, and far-infrared observations, and perform a two-dimensional morphological analysis to deblend the galaxy disc from substructures (merging satellites or star-forming regions). We find that the [C ii]158 μm emitting region has an effective radius 1.5–2.5 times larger than the optical one, consistent with recent observations. This [C ii] halo in our simulated galaxy arises as the joint effect of stellar outflows and carbon photoionization by the galaxy UV field, rather than from the emission of unresolved nearby satellites. At the typical angular resolution of current observations (≳ 0.15 arcsec) only merging satellites can be detected; detection of star-forming regions requires resolutions of ≲ 0.05 arcsec. The [C ii]-detected satellite has a 2.5-kpc projected distance from the galaxy disc, whereas the star-forming regions are embedded in the disc itself (distance ≲ 1 kpc). This suggests that multicomponent systems reported in the literature, which have separations ≳ 2 kpc, are merging satellites, rather than galactic substructures. Finally, the star-forming regions found in our mock maps follow the local L[C ii]–SFRUV relation of galaxy discs, although sampling the low-luminosity, low-SFR tail of the distribution. We show that future James Webb Space Telescope observations, bridging UV and [C ii] data sets, will be exceptionally suited to characterize galaxy substructures, thanks to their exquisite spatial resolution and sensitivity to both low-metallicity and dust-obscured regions that are bright at infrared wavelengths.


2018 ◽  
Vol 618 ◽  
pp. A1 ◽  
Author(s):  
L. Wang ◽  
P. Norberg ◽  
S. Brough ◽  
M. J. I. Brown ◽  
E. da Cunha ◽  
...  

Aims: We aim to investigate if the environment (characterised by the host dark matter halo mass) plays any role in shaping the galaxy star formation main sequence (MS). Methods: The Galaxy and Mass Assembly project (GAMA) combines a spectroscopic survey with photometric information in 21 bands from the far-ultraviolet (FUV) to the far-infrared (FIR). Stellar masses and dust-corrected star-formation rates (SFR) are derived from spectral energy distribution (SED) modelling using MAGPHYS. We use the GAMA galaxy group catalogue to examine the variation of the fraction of star-forming galaxies (SFG) and properties of the MS with respect to the environment. Results: We examine the environmental dependence for stellar mass selected samples without preselecting star-forming galaxies and study any dependence on the host halo mass separately for centrals and satellites out to z ∼ 0.3. We find the SFR distribution at fixed stellar mass can be described by the combination of two Gaussians (referred to as the star-forming Gaussian and the quiescent Gaussian). Using the observed bimodality to define SFG, we investigate how the fraction of SFG F(SFG) and properties of the MS change with environment. For centrals, the position of the MS is similar to the field but with a larger scatter. No significant dependence on halo mass is observed. For satellites, the position of the MS is almost always lower (by ∼0.2 dex) compared to the field and the width is almost always larger. F(SFG) is similar between centrals (in different halo mass bins) and field galaxies. However, for satellites F(SFG) decreases with increasing halo mass and this dependence is stronger towards lower redshift.


2018 ◽  
Vol 619 ◽  
pp. A52 ◽  
Author(s):  
M. Benedettini ◽  
S. Pezzuto ◽  
E. Schisano ◽  
P. André ◽  
V. Könyves ◽  
...  

Context. How the diffuse medium of molecular clouds condenses in dense cores and how many of these cores will evolve in protostars is still a poorly understood step of the star formation process. Much progress is being made in this field, thanks to the extensive imaging of star-forming regions carried out with the Herschel Space Observatory. Aims. The Herschel Gould Belt Survey key project mapped the bulk of nearby star-forming molecular clouds in five far-infrared bands with the aim of compiling complete census of prestellar cores and young, embedded protostars. From the complete sample of prestellar cores, we aim at defining the core mass function and studying its relationship with the stellar initial mass function. Young stellar objects (YSOs) with a residual circumstellar envelope are also detected. Methods. In this paper, we present the catalogue of the dense cores and YSOs/protostars extracted from the Herschel maps of the Lupus I, III, and IV molecular clouds. The physical properties of the detected objects were derived by fitting their spectral energy distributions. Results. A total of 532 dense cores, out of which 103 are presumably prestellar in nature, and 38 YSOs/protostars have been detected in the three clouds. Almost all the prestellar cores are associated with filaments against only about one third of the unbound cores and YSOs/protostars. Prestellar core candidates are found even in filaments that are on average thermally subcritical and over a background column density lower than that measured in other star-forming regions so far. The core mass function of the prestellar cores peaks between 0.2 and 0.3 M⊙, and it is compatible with the log-normal shape found in other regions. Herschel data reveal several, previously undetected, protostars and new candidates of Class 0 and Class II with transitional disks. We estimate the evolutionary status of the YSOs/protostars using two independent indicators: the α index and the fitting of the spectral energy distribution from near- to far-infrared wavelengths. For 70% of the objects, the evolutionary stages derived with the two methods are in agreement. Conclusions. Lupus is confirmed to be a very low-mass star-forming region, in terms of both the prestellar condensations and the diffuse medium. Noticeably, in the Lupus clouds we have found star formation activity associated with interstellar medium at low column density, usually quiescent in other (more massive) star-forming regions.


2014 ◽  
Vol 1 (1) ◽  
pp. 103-107
Author(s):  
Paolo Persi ◽  
Mauricio Tapia

We have studied a number of selected high mass star forming regions, including high resolution near-infrared broad- and narrow-band imaging, Herschel (70, 160, 250, 350 and 500<em> μ</em>m) and Spitzer (3.6, 4.5, 5.8 and 8.0 m) images. The preliminary results of one of this region, IRAS 19388+2357(MOL110) are discussed. In this region a dense core has been detected in the far-infrared, and a young stellar cluster has been found around this core. Combining near-IR data with Spitzer and Herschel photometry we have derived the spectral energy distribution of Mol110. Finally comparing our H<sub>2</sub> and Kc narrow-band images, we have found an H<sub>2</sub> jet in this region.


Sign in / Sign up

Export Citation Format

Share Document