scholarly journals Revisiting the pulsational characteristics of the exoplanet host star β Pictoris

2019 ◽  
Vol 627 ◽  
pp. A28 ◽  
Author(s):  
K. Zwintz ◽  
D. R. Reese ◽  
C. Neiner ◽  
A. Pigulski ◽  
R. Kuschnig ◽  
...  

Context. Exoplanet properties crucially depend on the parameters of their host stars: more accurate stellar parameters yield more accurate exoplanet characteristics. When the exoplanet host star shows pulsations, asteroseismology can be used for an improved description of the stellar parameters. Aims. We aim to revisit the pulsational properties of β Pic and identify its pulsation modes from normalized amplitudes in five different passbands. We also investigate the potential presence of a magnetic field. Methods. We conducted a frequency analysis using three seasons of BRITE-Constellation observations in the two BRITE filters, the about 620-day-long bRing light curve, and the nearly 8-year-long SMEI photometric time series. We calculated normalized amplitudes using all passbands and including previously published values obtained from ASTEP observations. We investigated the magnetic properties of β Pic using spectropolarimetric observations conducted with the HARPSpol instrument. Using 2D rotating models, we fit the normalized amplitudes and frequencies through Monte Carlo Markov chains. Results. We identify 15 pulsation frequencies in the range from 34 to 55 d−1, where two, F13 at 53.6917 d−1 and F11 at 50.4921 d−1, display clear amplitude variability. We use the normalized amplitudes in up to five passbands to identify the modes as three ℓ = 1, six ℓ = 2, and six ℓ = 3 modes. β Pic is shown to be non-magnetic with an upper limit of the possible undetected dipolar field of 300 Gauss. Conclusions. Multiple fits to the frequencies and normalized amplitudes are obtained, including one with a near equator-on inclination for β Pic, which corresponds to our expectations based on the orbital inclination of β Pic b and the orientation of the circumstellar disk. This solution leads to a rotation rate of 27% of the Keplerian breakup velocity, a radius of 1.497 ± 0.025 R⊙, and a mass of 1.797 ± 0.035 M⊙. The ∼2% errors in radius and mass do not account for uncertainties in the models and a potentially erroneous mode-identification.

2017 ◽  
Vol 68 (9) ◽  
pp. 2162-2165 ◽  
Author(s):  
Katarzyna Bloch ◽  
Mihail Aurel Titu ◽  
Andrei Victor Sandu

The paper presents the results of structural and microstructural studies for the bulk Fe65Co10Y5B20 and Fe63Co10Y7B20 alloys. All the rods obtained by the injection casting method were fully amorphous. It was found on the basis of analysis of distribution of hyperfine field induction that the samples of Fe65Co10Y5B20 alloy are characterised with greater atomic packing density. Addition of Y to the bulk amorphous Fe65Co10Y5B20 alloy leads to the decrease of the average induction of hyperfine field value. In a strong magnetic field (i.e. greater than 0.4HC), during the magnetization process of the alloys, where irreversible processes take place, the core losses associated with magnetization and de-magnetization were investigated.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17051-17057
Author(s):  
Anna Eichler-Volf ◽  
Yara Alsaadawi ◽  
Fernando Vazquez Luna ◽  
Qaiser Ali Khan ◽  
Simon Stierle ◽  
...  

PS/CoPd Janus particles respond very sensitively to application of low external magnetic fields. Owing to the magnetic properties, the PS/CoPd particles may be used, for example, to sense the presence of weak magnetic fields as micro-magnetometers.


2021 ◽  
Vol 125 (3) ◽  
pp. 2045-2054
Author(s):  
Xiaochao Zhou ◽  
Zhaoxia Kou ◽  
Wen Zhang ◽  
Meijuan Wang ◽  
Jun Du ◽  
...  

2021 ◽  
pp. 159196
Author(s):  
Nabil Labchir ◽  
Abdelkrim Hannour ◽  
Abderrahim Ait Hssi ◽  
Didier Vincent ◽  
Patrick Ganster ◽  
...  

2021 ◽  
Vol 502 (4) ◽  
pp. 5658-5667
Author(s):  
G C MacLeod ◽  
Derck P Smits ◽  
J A Green ◽  
S P van den Heever

ABSTRACT The first confirmed periodically varying 6.031 and 6.035 GHz hydroxyl masers are reported here. They vary contemporaneously with the 6.7 GHz methanol masers in G323.459–0.079. The 1.665 GHz hydroxyl and 12.2  GHz methanol masers associated with G323.459–0.079 are also periodic. Evidence for periodicity is seen in all features in all transitions save a single 1.665 GHz hydroxyl maser feature. Historical excited-state hydroxyl maser observations set a stricter upper limit on the epoch in which a significant accretion event occurred. The associated burst in 6.7 GHz methanol maser activity has subsided significantly while the hydroxyl transitions are brightening possibly the result of changing physical conditions in the masing cloudlets. Time lags in methanol are confirmed and may be the result of the periodic flaring propagating outward from the central region of maser activity. A possible magnetic field reversal occurred during the accretion event.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


Sign in / Sign up

Export Citation Format

Share Document