scholarly journals Thermal properties of slowly rotating asteroids: results from a targeted survey

2019 ◽  
Vol 625 ◽  
pp. A139 ◽  
Author(s):  
A. Marciniak ◽  
V. Alí-Lagoa ◽  
T. G. Müller ◽  
R. Szakáts ◽  
L. Molnár ◽  
...  

Context. Earlier work suggests that slowly rotating asteroids should have higher thermal inertias than faster rotators because the heat wave penetrates deeper into the subsurface. However, thermal inertias have been determined mainly for fast rotators due to selection effects in the available photometry used to obtain shape models required for thermophysical modelling (TPM). Aims. Our aims are to mitigate these selection effects by producing shape models of slow rotators, to scale them and compute their thermal inertia with TPM, and to verify whether thermal inertia increases with the rotation period. Methods. To decrease the bias against slow rotators, we conducted a photometric observing campaign of main-belt asteroids with periods longer than 12 h, from multiple stations worldwide, adding in some cases data from WISE and Kepler space telescopes. For spin and shape reconstruction we used the lightcurve inversion method, and to derive thermal inertias we applied a thermophysical model to fit available infrared data from IRAS, AKARI, and WISE. Results. We present new models of 11 slow rotators that provide a good fit to the thermal data. In two cases, the TPM analysis showed a clear preference for one of the two possible mirror solutions. We derived the diameters and albedos of our targets in addition to their thermal inertias, which ranged between 3−3+33 and 45−30+60 J m−2 s−1∕2 K−1. Conclusions. Together with our previous work, we have analysed 16 slow rotators from our dense survey with sizes between 30 and 150 km. The current sample thermal inertias vary widely, which does not confirm the earlier suggestion that slower rotators have higher thermal inertias.

2018 ◽  
Vol 610 ◽  
pp. A7 ◽  
Author(s):  
A. Marciniak ◽  
P. Bartczak ◽  
T. Müller ◽  
J. J. Sanabria ◽  
V. Alí-Lagoa ◽  
...  

Context. The available set of spin and shape modelled asteroids is strongly biased against slowly rotating targets and those with low lightcurve amplitudes. This is due to the observing selection effects. As a consequence, the current picture of asteroid spin axis distribution, rotation rates, radiometric properties, or aspects related to the object’s internal structure might be affected too. Aims. To counteract these selection effects, we are running a photometric campaign of a large sample of main belt asteroids omitted in most previous studies. Using least chi-squared fitting we determined synodic rotation periods and verified previous determinations. When a dataset for a given target was sufficiently large and varied, we performed spin and shape modelling with two different methods to compare their performance. Methods. We used the convex inversion method and the non-convex SAGE algorithm, applied on the same datasets of dense lightcurves. Both methods search for the lowest deviations between observed and modelled lightcurves, though using different approaches. Unlike convex inversion, the SAGE method allows for the existence of valleys and indentations on the shapes based only on lightcurves. Results. We obtain detailed spin and shape models for the first five targets of our sample: (159) Aemilia, (227) Philosophia, (329) Svea, (478) Tergeste, and (487) Venetia. When compared to stellar occultation chords, our models obtained an absolute size scale and major topographic features of the shape models were also confirmed. When applied to thermophysical modelling (TPM), they provided a very good fit to the infrared data and allowed their size, albedo, and thermal inertia to be determined. Conclusions. Convex and non-convex shape models provide comparable fits to lightcurves. However, some non-convex models fit notably better to stellar occultation chords and to infrared data in sophisticated thermophysical modelling (TPM). In some cases TPM showed strong preference for one of the spin and shape solutions. Also, we confirmed that slowly rotating asteroids tend to have higher-than-average values of thermal inertia, which might be caused by properties of the surface layers underlying the skin depth.


2018 ◽  
Vol 620 ◽  
pp. A91 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš

Context. In addition to stellar data, Gaia Data Release 2 (DR2) also contains accurate astrometry and photometry of about 14 000 asteroids covering 22 months of observations. Aims. We used Gaia asteroid photometry to reconstruct rotation periods, spin axis directions, and the coarse shapes of a subset of asteroids with enough observations. One of our aims was to test the reliability of the models with respect to the number of data points and to check the consistency of these models with independent data. Another aim was to produce new asteroid models to enlarge the sample of asteroids with known spin and shape. Methods. We used the lightcurve inversion method to scan the period and pole parameter space to create final shape models that best reproduce the observed data. To search for the sidereal rotation period, we also used a simpler model of a geometrically scattering triaxial ellipsoid. Results. By processing about 5400 asteroids with at least 10 observations in DR2, we derived models for 173 asteroids, 129 of which are new. Models of the remaining asteroids were already known from the inversion of independent data, and we used them for verification and error estimation. We also compared the formally best rotation periods based on Gaia data with those derived from dense lightcurves. Conclusions. We show that a correct rotation period can be determined even when the number of observations N is less than 20, but the rate of false solutions is high. For N > 30, the solution of the inverse problem is often successful and the parameters are likely to be correct in most cases. These results are very promising because the final Gaia catalogue should contain photometry for hundreds of thousands of asteroids, typically with several tens of data points per object, which should be sufficient for reliable spin reconstruction.


2015 ◽  
Vol 10 (S318) ◽  
pp. 170-176 ◽  
Author(s):  
Josef Ďurech ◽  
Josef Hanuš ◽  
Victor M. Alí-Lagoa ◽  
Marco Delbo ◽  
Dagmara A. Oszkiewicz

AbstractAsteroid disk-integrated sparse-in-time photometry can be used for determination of shapes and spin states of asteroids by the lightcurve inversion method. To clearly distinguish the correct solution of the rotation period from other minima in the parameter space, data with good photometric accuracy are needed. We show that if the low-quality sparse photometry obtained from ground-based astrometric surveys is combined with data from the Wide-field Infrared Survey Explorer (WISE) satellite, the correct rotation period can be successfully derived. Although WISE observed in mid-IR wavelengths, we show that for the period and spin determination, these data can be modelled as reflected light. The absolute fluxes are not required since only relative variation of the flux over the rotation is sufficient to determine the period. We also discuss the potential of combining all WISE data with the Lowell photometric database to create physical models of thousands of asteroids.


2018 ◽  
Vol 609 ◽  
pp. A86 ◽  
Author(s):  
J. Ďurech ◽  
D. Vokrouhlický ◽  
P. Pravec ◽  
J. Hanuš ◽  
D. Farnocchia ◽  
...  

Context. The rotation states of small asteroids are affected by a net torque arising from an anisotropic sunlight reflection and thermal radiation from the asteroids’ surfaces. On long timescales, this so-called YORP effect can change asteroid spin directions and their rotation periods. Aims. We analyzed lightcurves of four selected near-Earth asteroids with the aim of detecting secular changes in their rotation rates that are caused by YORP or at least of putting upper limits on such changes. Methods. We use the lightcurve inversion method to model the observed lightcurves and include the change in the rotation rate dω/ dt as a free parameter of optimization. To enlarge the time line of observations and to increase the sensitivity of the method, we collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used thermal infrared data from the WISE spacecraft and estimated their size and thermal inertia by means of a thermophysical model. We also used the currently available optical and radar astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. Results. We detected a YORP acceleration of dω/ dt = (1.9 ± 0.3) × 10-8 rad d-2 for asteroid Cacus. The current astrometric data set is not sufficient to provide detection of the Yarkovsky effect in this case. For Toro, we have a tentative (2σ) detection of YORP from a significant improvement of the lightcurve fit for a nonzero value of dω/ dt = 3.0 × 10-9 rad d-2. We note an excellent agreement between the observed secular change of the semimajor axis da/ dt and the theoretical expectation for densities in the 2–2.5 g cm-3 range. For asteroid Eger, we confirmed the previously published YORP detection with more data and updated the YORP value to (1.1 ± 0.5) × 10-8 rad d-2. We also updated the shape model of asteroid Ra-Shalom and put an upper limit for the change of the rotation rate to | dω/ dt | ≲ 1.5 × 10-8 rad d-2. Ra-Shalom has a greater than 3σ Yarkovsky detection with a theoretical value consistent with observations assuming its size and/or density is slightly larger than the nominally expected values. Using the convex shape models and spin parameters reconstructed from lightcurves, we computed theoretical YORP values and compared them with those measured. They agree with each other within the expected uncertainties of the model.


2020 ◽  
Author(s):  
Özgür Karatekin ◽  
Gregoire Henry ◽  
Elodie Gloesener ◽  
Bart van Hove

<p>The target of the ESA’s HERA mission is asteroid 65803 Didymos (1996 GT), an Apollo-type near-Earth object (NEO). Didymos is a binary asteroid; the primary body has a diameter of around 775 m and a rotation period of 2.26 hours, whereas the secondary body (informally called Didymoon) has a diameter of around 165 m and rotates around the primary at a distance of around 1.2 km in around 12 hours.</p><p>Thermophysical properties of the uppermost surface govern the exchange of radiative energy between the asteroid and its environment, hence determine surface and subsurface temperatures.  These thermophysical properties are characterized by grain size, porosity, or packing of the surface materials.  Diurnal change in surface temperature show large variations in fine soils like sand and highly porous rock with low thermal inertia, and much smaller variations in in dense rock with high thermal inertia. Here we present a thermophysical model of Didymoon based on known, assumed and derived range of physical properties.  A parameter study has been carried out for surface temperatures assuming possible thermal inertia ranges.  </p><p>Results from this study are used to investigate performance for Thermal Infrared instrument TIRA onboard HERA spacecraft. Hera is the European contribution to an international double-spacecraft collaboration. Due to launch in 2024, Hera would travel to the binary asteroid system. TIRA onboard HERA will be operating in the 8-14 µm wavelength range. It will be used for scientific analysis and to demonstrate the feasibility of using a TIR camera for GNC (Guidance, navigation and control). The main scientific output for TIRA is to determine the thermal inertia and thus the properties of the surface material.</p>


2019 ◽  
Vol 631 ◽  
pp. A2 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš ◽  
R. Vančo

Context. Rotation properties (spin-axis direction and rotation period) and coarse shape models of asteroids can be reconstructed from their disk-integrated brightness when measured from various viewing geometries. These physical properties are essential for creating a global picture of structure and dynamical evolution of the main belt. Aims. The number of shape and spin models can be increased not only when new data are available, but also by combining independent data sets and inverting them together. Our aim was to derive new asteroid models by processing readily available photometry. Methods. We used asteroid photometry compiled in the Lowell Observatory photometry database with photometry from the Gaia Data Release 2. Both data sources are available for about 5400 asteroids. In the framework of the Asteroids@home distributed computing project, we applied the light curve inversion method to each asteroid to find its convex shape model and spin state that fits the observed photometry. Results. Due to the limited number of Gaia DR2 data points and poor photometric accuracy of Lowell data, we were able to derive unique models for only ∼1100 asteroids. Nevertheless, 762 of these are new models that significantly enlarge the current database of about 1600 asteroid models. Conclusions. Our results demonstrate the importance of a combined approach to inversion of asteroid photometry. While our models in general agree with those obtained by separate inversion of Lowell and Gaia data, the combined inversion is more robust, model parameters are more constrained, and unique models can be reconstructed in many cases when individual data sets alone are not sufficient.


2019 ◽  
Vol 15 (S350) ◽  
pp. 451-453
Author(s):  
G. Apostolovska ◽  
E. Vchkova Bebekovska ◽  
A. Kostov ◽  
Z. Donchev

AbstractAs a result of collisions during their lifetimes, asteroids have a large variety of different shapes. It is believed that high velocity collisions or rotational spin-up of asteroids continuously replenish the Sun’s zodiacal cloud and debris disks around extrasolar planets (Jewitt (2010)). Knowledge of the spin and shape parameters of the asteroids is very important for understanding collision asteroid processes. Lately photometric observations of asteroids showed that variations in brightness are not accompanied by variations in colour index which indicate that the shape of the lightcurve is caused by varying illuminations of the asteroid surface rather than albedo variations over the surface. This conclusion became possible when photometric investigations were combined with laboratory experiments (Dunlap (1971)). In this article using the convex lightcurve inversion method we obtained the sense of rotation, pole solutions and preliminary shape of 901 Brunsia.


2020 ◽  
Vol 638 ◽  
pp. A11
Author(s):  
E. Podlewska-Gaca ◽  
A. Marciniak ◽  
V. Alí-Lagoa ◽  
P. Bartczak ◽  
T. G. Müller ◽  
...  

Context. Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and hence their density. However, some of those diameters are still based on simple thermal models, which can occasionally lead to volume uncertainties as high as 20–30%. Aims. The aim of this paper is to determine the 3D shape models and compute the volumes for 13 main belt asteroids that were selected from those targets for which Gaia will provide the mass with an accuracy of better than 10%. Methods. We used the genetic Shaping Asteroids with Genetic Evolution (SAGE) algorithm to fit disk-integrated, dense photometric lightcurves and obtain detailed asteroid shape models. These models were scaled by fitting them to available stellar occultation and/or thermal infrared observations. Results. We determine the spin and shape models for 13 main belt asteroids using the SAGE algorithm. Occultation fitting enables us to confirm main shape features and the spin state, while thermophysical modeling leads to more precise diameters as well as estimates of thermal inertia values. Conclusions. We calculated the volume of our sample of main-belt asteroids for which the Gaia satellite will provide precise mass determinations. From our volumes, it will then be possible to more accurately compute the bulk density, which is a fundamental physical property needed to understand the formation and evolution processes of small Solar System bodies.


2020 ◽  
Vol 638 ◽  
pp. A84
Author(s):  
V. Alí-Lagoa ◽  
T. G. Müller ◽  
C. Kiss ◽  
R. Szakáts ◽  
G. Marton ◽  
...  

Non-resolved thermal infrared observations enable studies of thermal and physical properties of asteroids via thermo-physical models provided the shape and rotational properties of the target are well determined. We used calibration-programme Herschel PACS data (70, 100, 160 μm) and state-of-the-art shape models derived from adaptive-optics observations and/or optical light curves to constrain for the first time the thermal inertia of twelve large main-belt asteroids. We also modelled previously well-characterised targets such as (1) Ceres or (4) Vesta as they constitute important benchmarks. Using the scale as a free parameter, most targets required a re-scaling ~5% consistent with what would be expected given the absolute calibration error bars. This constitutes a good cross-validation of the scaled shape models, although some targets required larger re-scaling to reproduce the IR data. We obtained low thermal inertias typical of large main belt asteroids studied before, which continues to give support to the notion that these surfaces are covered by fine-grained insulating regolith. Although the wavelengths at which PACS observed are longwards of the emission peak for main-belt asteroids, they proved to be extremely valuable to constrain size and thermal inertia and not too sensitive to surface roughness. Finally, we also propose a graphical approach to help examine how different values of the exponent used for scaling the thermal inertia as a function of heliocentric distance (i.e. temperature) affect our interpretation of the results.


2005 ◽  
Vol 13 ◽  
pp. 749-751
Author(s):  
Thomas G. Müller

AbstractThrough a recently developed thermophysical model, observations from the Infrared Space Observatory (ISO) were combined with visual photometry, lightcurves, close-up observations and direct measurement. In this way, many applications were possible, ranging from simple diameter and albedo determination of serendipitously seen asteroids to sophisticated studies of mineralogic aspects and regolith properties, like emissivity, roughness or thermal inertia for well-known asteroids. The possibility to combine all sources of information in one single model lead also to a better understanding of thermophysical effects, like beaming or the before/after opposition effect. Thus, the mineralogic signatures can be recognized easier and asteroid data from infrared surveys and individual IR photometry can be interpreted more accurately, even in cases where shape or rotational behaviour are not known. Some well-studied asteroids are now even considered as excellent far-infrared calibrators.


Sign in / Sign up

Export Citation Format

Share Document