scholarly journals Quasars as standard candles II

2019 ◽  
Vol 631 ◽  
pp. A120 ◽  
Author(s):  
F. Salvestrini ◽  
G. Risaliti ◽  
S. Bisogni ◽  
E. Lusso ◽  
C. Vignali

A tight non-linear relation between the X-ray and the optical-ultraviolet (UV) emission has been observed in active galactic nuclei (AGN) over a wide range of redshift and several orders of magnitude in luminosity, suggesting the existence of an ubiquitous physical mechanism regulating the energy transfer between the accretion disc and the X-ray emitting corona. Recently, our group developed a method to use this relation in observational cosmology, turning quasars into standardizable candles. This work mainly seeks to investigate the potential evolution of this correction at high redshifts. We thus studied the LX − LUV relation for a sample of quasars in the redshift range 4 <  z <  7, adopting the selection criteria proposed in our previous work regarding their spectral properties. The resulting sample consists of 53 type 1 (unobscured) quasars, observed either with Chandra or XMM-Newton, for which we performed a full spectral analysis, determining the rest-frame 2 keV flux density, as well as more general X-ray properties such as the estimate of photon index, and the soft (0.5–2 keV) and hard (2–10 keV) unabsorbed luminosities. We find that the relation shows no evidence for evolution with redshift. The intrinsic dispersion of the LX–LUV for a sample free of systematics/contaminants is of the order of 0.22 dex, which is consistent with previous estimates from our group on quasars at lower redshift.

2019 ◽  
Vol 629 ◽  
pp. A56 ◽  
Author(s):  
S. J. Curran ◽  
J. P. Moss

A simple estimate of the photometric redshift would prove invaluable to forthcoming continuum surveys on the next generation of large radio telescopes, as well as mitigating the existing bias towards the most optically bright sources. While there is a well-known correlation between the near-infrared K-band magnitude and redshift for galaxies, we find the K − z relation to break down for samples dominated by quasi-stellar objects. We hypothesise that this is due to the additional contribution to the near-infrared flux by the active galactic nucleus, and, as such, the K-band magnitude can only provide a lower limit to the redshift in the case of active galactic nuclei, which will dominate the radio surveys. From a large optical dataset, we find a tight relationship between the rest-frame (U − K)/(W2 − FUV) colour ratio and spectroscopic redshift over a sample of 17 000 sources, spanning z ≈ 0.1−5. Using the observed-frame ratios of (U − K)/(W2 − FUV) for redshifts of z ≲ 1, (I − W2)/(W3 − U) for 1 ≲ z ≲ 3, and (I − W2.5)/(W4 − R) for z ≳ 3, where W2.5 is the λ = 8.0 μm magnitude and the appropriate redshift ranges are estimated from the W2 (4.5 μm) magnitude, we find this to be a robust photometric redshift estimator for quasars. We suggest that the rest-frame U − K colour traces the excess flux from the AGN over this wide range of redshifts, although the W2 − FUV colour is required to break the degeneracy.


2019 ◽  
Vol 486 (1) ◽  
pp. 1094-1122 ◽  
Author(s):  
Jonathan Mackey ◽  
Stefanie Walch ◽  
Daniel Seifried ◽  
Simon C O Glover ◽  
Richard Wünsch ◽  
...  

ABSTRACT Sources of X-rays such as active galactic nuclei and X-ray binaries are often variable by orders of magnitude in luminosity over time-scales of years. During and after these flares the surrounding gas is out of chemical and thermal equilibrium. We introduce a new implementation of X-ray radiative transfer coupled to a time-dependent chemical network for use in 3D magnetohydrodynamical simulations. A static fractal molecular cloud is irradiated with X-rays of different intensity, and the chemical and thermal evolution of the cloud are studied. For a simulated $10^5\, \mathrm{M}_\odot$ fractal cloud, an X-ray flux &lt;0.01 erg cm−2 s−1 allows the cloud to remain molecular, whereas most of the CO and H2 are destroyed for a flux of ≥1 erg cm−2 s−1. The effects of an X-ray flare, which suddenly increases the X-ray flux by 105×, are then studied. A cloud exposed to a bright flare has 99 per cent of its CO destroyed in 10–20 yr, whereas it takes &gt;103 yr for 99 per cent of the H2 to be destroyed. CO is primarily destroyed by locally generated far-UV emission from collisions between non-thermal electrons and H2; He+ only becomes an important destruction agent when the CO abundance is already very small. After the flare is over, CO re-forms and approaches its equilibrium abundance after 103–105 yr. This implies that molecular clouds close to Sgr A⋆ in the Galactic Centre may still be out of chemical equilibrium, and we predict the existence of clouds near flaring X-ray sources in which CO has been mostly destroyed but H is fully molecular.


2014 ◽  
Vol 447 (2) ◽  
pp. 1692-1704 ◽  
Author(s):  
Qi-Xiang Yang ◽  
Fu-Guo Xie ◽  
Feng Yuan ◽  
Andrzej A. Zdziarski ◽  
Marek Gierliński ◽  
...  

2020 ◽  
Vol 493 (1) ◽  
pp. 930-939 ◽  
Author(s):  
Gunnar W Jaffarian ◽  
C Martin Gaskell

ABSTRACT We present a large compilation of reddening estimates from broad-line Balmer decrements for active galactic nuclei (AGNs) with measured X-ray column densities. The median reddening is E(B − V) ≈ 0.77 ± 0.10 for type-1 to type-1.9 AGNs with reported column densities. This is notably higher than the median reddening of AGNs from the SDSS. We attribute this to the selection bias of the SDSS towards blue AGNs. For other AGNs, we find evidence of a publication bias against reporting low column densities. We find a significant correlation between NH and E(B − V) but with a large scatter of ±1 dex. On average, the X-ray columns are consistent with those predicted from E(B − V) for a solar neighbourhood dust-to-gas ratio. We argue that the large scatter of column densities and reddenings can be explained by X-ray column density variability. For AGNs with detectable broad-line regions (BLRs) that have undergone significant changes of Seyfert type (‘changing-look’ AGNs), we do not find any statistically significant differences in NH or E(B − V) compared to standard type-1 to type-1.9 AGNs. There is no evidence for any type-1 AGNs being Compton thick. We also analyse type-2 AGNs and find no significant correlation between NH and narrow-line region reddening. We find no evidence for a previously claimed anticorrelation. The median column density of LINERs is 22.68 ± 0.75 compared to a column density of 22.90 ± 0.28 for type-2 AGNs. We find the majority of low column density type-2 AGNs are LINERs, but NH is probably underestimated because of scattered light.


2017 ◽  
Vol 469 (1) ◽  
pp. 110-126 ◽  
Author(s):  
I. García-Bernete ◽  
C. Ramos Almeida ◽  
H. Landt ◽  
M. J. Ward ◽  
M. Baloković ◽  
...  

2012 ◽  
Vol 762 (2) ◽  
pp. 80 ◽  
Author(s):  
M. M. Tatum ◽  
T. J. Turner ◽  
L. Miller ◽  
J. N. Reeves

Sign in / Sign up

Export Citation Format

Share Document