seyfert type
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 508 (1) ◽  
pp. 144-156
Author(s):  
Muryel Guolo ◽  
Daniel Ruschel-Dutra ◽  
Dirk Grupe ◽  
Bradley M Peterson ◽  
Thaisa Storchi-Bergmann ◽  
...  

ABSTRACT We present an analysis of historical multiwavelength emission of the `Changing Look' (CL) Active Galactic Nucleu (AGN) in NGC 2992, covering epochs ranging from 1978 to 2021, as well as new X-ray and optical spectra. The galaxy presents multiple Seyfert type transitions from Type 2 to intermediate-type, losing and regaining its Hα broad emission lines (BEL) recurrently. In X-rays, the source shows intrinsic variability with the absorption corrected luminosity varying by a factor of ∼ 40. We rule-out tidal disruption events or variable obscuration as causes of the type transitions, and show that the presence and the flux of th Hα BEL is directly correlated with the 2–10 keV X-ray luminosity (L2−10): the component disappears at L2−10 ≤ 2.6 × 1042 $\rm erg\, cm^{-2}\, s^{-1}$; this luminosity value translates into an Eddington ratio (λEdd) of ∼ 1 per cent. The λEdd in which the BEL transitions occur is the same as the critical value at which a state transition between a radiatively inefficient accretion flow and a thin accretion disk is expected, such similarity suggests that the AGN is operating at the threshold mass accretion rate between the two accretion modes. We find a correlation between the narrow Fe Kα flux and λEdd, and an anticorrelation between full-width at half maximum of Hα BEL and λEdd, in agreement with theoretical predictions. Two possible scenarios for type transitions are compatible with our results: either the dimming of the AGN continuum, which reduces the supply of ionizing photons available to excite the gas in the Broad Line Region (BLR), or the fading of the BLR structure itself occurs as the low accretion rate is not able to sustain the required cloud flow rate in a disc-wind BLR model.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 202
Author(s):  
Mikhail Piotrovich ◽  
Stanislava Buliga ◽  
Tinatin Natsvlishvili

Based on the spectropolarimetric data of 33 Seyfert type 1 galaxies observed with the BTA-6m telescope of the Special Astrophysical Observatory, we estimated the magnetic field values at the event horizon of the supermassive black hole BH and the exponents of the power-law dependence s of the magnetic field on the radius. We used the model of optically thick geometrically thin Shakura–Sunyaev accretion disk. The average value of logBH[G] was found to be ∼4, which is in good agreement with the results obtained by other methods. The average value of s is s≈1.7, and its distribution maximum span is in the range od 1.85<s<2.0. This is a rather interesting result, since s=5/4 is usually adopted in calculations for Shakura–Sunyaev accretion disks. In addition, for two objects PG 1545+210 and 2MASX J06021107+2828382, the measured degree of polarization is greater than the maximum possible value at the angle between the line of sight and the axis of the accretion disk i=45°. It was concluded that for these objects the angle should be closer to i=60°.


2021 ◽  
Vol 503 (3) ◽  
pp. 3886-3895
Author(s):  
Jun Yang ◽  
Zsolt Paragi ◽  
Robert J Beswick ◽  
Wen Chen ◽  
Ilse M van Bemmel ◽  
...  

ABSTRACT The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous ‘inside–out’ multiwavelength outburst in Spring 2013, and a dramatic Seyfert-type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search for the jet activity associated with this variable accretion activity, we carried out multiresolution and multiwavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about 2 pc in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of ∼1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the ‘inside–out’ outburst of 2013. Moreover, we report that most optically selected changing-look active galactic nuclei (AGN) at z &lt; 0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.


2021 ◽  
Vol 502 (1) ◽  
pp. L61-L65
Author(s):  
Jun Yang ◽  
Ilse van Bemmel ◽  
Zsolt Paragi ◽  
S Komossa ◽  
Feng Yuan ◽  
...  

ABSTRACT Broad Balmer emission lines in active galactic nuclei (AGN) may display dramatic changes in amplitude, even disappearance and re-appearance in some sources. As a nearby galaxy at a redshift of z = 0.0264, Mrk 590 suffered such a cycle of Seyfert type changes between 2006 and 2017. Over the last 50 yr, Mrk 590 also underwent a powerful continuum outburst and a slow fading from X-rays to radio wavelengths with a peak bolometric luminosity reaching about 10 per cent of the Eddington luminosity. To track its past accretion and ejection activity, we performed very long baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.6 GHz in 2015. The EVN observations reveal a faint (∼1.7 mJy) radio jet extending up to ∼2.8 mas (projected scale ∼1.4 pc) toward north, and probably resulting from the very intensive AGN activity. To date, such a parsec-scale jet is rarely seen in the known changing-look AGN. The finding of the faint jet provides further strong support for variable accretion as the origin of the type changes in Mrk 590.


2018 ◽  
Vol 618 ◽  
pp. A83 ◽  
Author(s):  
M. Zetzl ◽  
W. Kollatschny ◽  
M. W. Ochmann ◽  
D. Grupe ◽  
M. Haas ◽  
...  

Aims. A strong outburst in the X-ray continuum and a change of its Seyfert spectral type was detected in HE 1136-2304 in 2014. The spectral type changed from nearly Seyfert 2 type (1.95) to Seyfert 1.5 type in comparison to previous observations taken ten to twenty years before. In a subsequent variability campaign we wanted to investigate whether this outburst was a single event or whether the variability pattern following the outburst was similar to those seen in other variable Seyfert galaxies. Methods. In addition to a SALT spectral variability campaign, we carried out optical continuum, as well as X-ray and UV (Swift) monitoring studies from 2014 to 2017. Results. HE 1136-2304 strongly varied on timescales of days to months from 2014 to 2017. No systematic trends were found in the variability behavior following the outburst in 2014. A general decrease in flux would have been expected for a tidal disruption event. This could not be confirmed. More likely the flux variations are connected to irregular fluctuations in the accretion rate. The strongest variability amplitudes have been found in the X-ray regime: HE 1136-2304 varied by a factor of eight during 2015. The amplitudes of the continuum variability (from the UV to the optical) systematically decreased with wavelength following a power law Fvar = a × λ−c with c = 0.84. There is a trend that the B-band continuum shows a delay of three light days with respect to the variable X-ray flux. The Seyfert type 1.5 did not change despite the strong continuum variations for the period between 2014 and 2017.


2009 ◽  
Vol 5 (S267) ◽  
pp. 120-120
Author(s):  
Lucimara Martins ◽  
Alberto Ardila ◽  
Ruth Gruenwald ◽  
Ronaldo de Souza

AbstractNGC 1068 is a well-studied Seyfert type 2 AGN. Because of its proximity, it is one of the brightest Seyferts observed. Its nuclear region harbors a variety of astrophysical phenomena connected to physical conditions in the NLR and its emission lines. The relative importance of photoionization from the nucleus and shocks produced by jets has been long debated. To help resolve this controversy, we have carried out long-slit spectroscopy in the near-IR and present here for the first time spectroscopy of the whole range from 0.8 to 2.4 μm for this galaxy over 15″ in the nuclear region.


2002 ◽  
Vol 389 (3) ◽  
pp. 802-811 ◽  
Author(s):  
G. C. Perola ◽  
G. Matt ◽  
M. Cappi ◽  
F. Fiore ◽  
M. Guainazzi ◽  
...  
Keyword(s):  

2000 ◽  
Vol 174 ◽  
pp. 318-324
Author(s):  
Gene Byrd ◽  
Mauri Valtonen

AbstractTheories of nuclear activity mechanisms in disk galaxies (such as Seyfert galaxies) range from intrinsic (e.g. bars) to external (tidal perturbation by passing companions). The Byrd et al. (1986, 1987) simulation survey determined the tidal perturbation necessary to induce nuclear activity. Observational surveys have raised doubt as to the tidal explanation of Seyfert-type activity in galaxies with some suggesting a weak or nonexistent correlation between tidal perturbation and Seyfert activity compared to a normal sample. The simulations show a several hundred million year delay in the appearance of activity after perturbation and a similar duration which can explain these null results. For double galaxies, we derive from the tidal hypothesis that: (1) There should be an excess of pairs where both are active over pairs with one active. (2) Nuclear activity will be preferentially excluded from pairs which are unequal and favorably distributed to pairs where the members are equal. (3) The size of pair members to create activity can be smaller if the pair members are equal in size than if they are unequal. (4) Pairs where one or both members are active should have a smaller velocity difference times separation than if both are normal. All the predictions are seen in observations of activity in Karachentsev’s (1983) list of double galaxies. Optimally, statistical studies of nuclear activity and companions should include their sizes, separations, and radial velocities relative to the primary. The study by Dultzin-Hacyan et al. (1999) which finds an excess of large companions around Seyfert 2 galaxies is a step in the right direction.


Sign in / Sign up

Export Citation Format

Share Document