scholarly journals Understanding Jupiter’s deep interior: the effect of a dilute core

2019 ◽  
Vol 632 ◽  
pp. A76
Author(s):  
Dongdong Ni

Context. The Juno spacecraft has significantly improved the accuracy of low-order even gravitational harmonics. It has been demonstrated that a dilute core is helpful to interpret Juno’s gravity measurements. However, introducing a dilute core adds a new degree of freedom to Jupiter’s interior models in addition to the uncertainties in the equations of state for hydrogen and helium. Aims. We present four-layer structure models for Jupiter where a dilute core region is added above a central compact core of rocks. The effect of the dilute core on the structure and composition of Jupiter is investigated in detail. Combined with current knowledge of Jupiter’s composition and thermal state, we aim to obtain information on the dilute core. Also, we investigate the effect of equations of state for hydrogen and helium on the predictions of the core mass and heavy element abundance. Methods. In the four-layer structure model, the heavy element abundances in the outer two envelopes and the mass of the compact core were adjusted to reproduce Jupiter’s equatorial radius as well as Juno’s gravity observations. Different dilute core configurations were constructed in terms of its size and composition and different equations of state for hydrogen and helium were used in interior structure calculations. Optimized calculations were then performed to investigate the effect of dilute cores and equations of state on Jupiter’s internal structure and composition. Results. It is found that the absolute values of J6 and J8 tend to decrease as helium becomes more depleted in the dilute core region. Most interior structure calculations seem to prefer an inward decrease of the helium mass fraction from the metallic envelope to the dilute core region. We also show that the core mass and heavy element abundance in Jupiter are dependent upon the rock-to-ice ratio in the dilute core region, the temperature jump from the molecular to metallic envelope, and the equations of state for hydrogen and helium. The resulting heavy-element mass in the core is generally larger than the three-layer structure models owing to the heavy elements dissolved in the dilute core region, and the global heavy-element abundance is in good agreement with the available dilute-core predictions.

2020 ◽  
Vol 639 ◽  
pp. A10 ◽  
Author(s):  
Dongdong Ni

Context. Measurements of Saturn’s gravity field by Cassini Grand Finale have been acquired with high precision. It has been demonstrated that the even gravitational harmonics J6–J10 have larger absolute values than the predictions by typical rigid-body interior models. A four-layer structure model, proposed to interpret Juno’s gravity measurements for Jupiter, has been applied to Saturn, but great attention was paid to the depth of zonal flows in order to interpret the large absolute values of J6–J10. Aims. We aim to understand the internal structure and interior composition of Saturn with a similar model for Jupiter. The additional uncertainties in Saturn’s structure and composition are investigated in detail, such as rotation periods, atmospheric helium mass fractions, and flow-induced gravity corrections. Also, we investigate the effect of equations of state for hydrogen and helium on the predictions of the core mass and heavy element abundance. Methods. In the four-layer structure model, we adjusted the heavy element abundances in the outer two envelopes and the mass of the compact core in order to reproduce Saturn’s equatorial radius as well as the Cassini Grand Finale gravity measurements corrected by the flow-induced gravity signals. Different four-layer interior models are specified in terms of the rotation period, the atmospheric helium mass fraction, and the flow-induced gravity corrections. Two different ab initio equations of state for hydrogen and helium were used in interior structure calculations. Optimized calculations were then performed to explore Saturn’s internal structure and composition. Results. It is found that the absolute values of J6–J10 tend to increase with increasing deep rotation rate and depend on the equations of state adopted in interior calculations. Saturn’s deep rotation rate and atmospheric helium mass fraction are important to determine the distribution of helium and heavy elements in the outer envelopes. We also show that the core mass and heavy element abundance in Saturn are dependent upon the deep rotation rate, the atmospheric helium mass fraction, the flow-induced gravity corrections, and the equations of state for hydrogen and helium.


2010 ◽  
Vol 6 (S270) ◽  
pp. 151-158
Author(s):  
Ralph E. Pudritz

AbstractWe review computational approaches to understanding the origin of the Initial Mass Function (IMF) during the formation of star clusters. We examine the role of turbulence, gravity and accretion, equations of state, and magnetic fields in producing the distribution of core masses - the Core Mass Function (CMF). Observations show that the CMF is similar in form to the IMF. We focus on feedback processes such as stellar dynamics, radiation, and outflows can reduce the accreted mass to give rise to the IMF. Numerical work suggests that filamentary accretion may play a key role in the origin of the IMF.


1982 ◽  
Vol 4 (4) ◽  
pp. 396-400 ◽  
Author(s):  
J. Lattanzio

Duley (1974) has shown that, at the temperatures usually associated with interstellar gas clouds, we would expect CNO grains to be present. During gravitational collapse these grains migrate to the centre of the gas cloud, leading to an enhancement of the heavy-element abundance in the core (Prentice 1976, 1978). It was Krautschneider (1977) who verified such a scenario, by considering the dynamical collapse of gas and grain clouds. If such an initial radial abundance inhomogeneity existed, Prentice (1976a) showed that this configuration may well survive the later convective mixing phase and thus approach the zero-age main-sequence (ZAMS) with a small (-v 3% by mass) metal enhanced core.


2018 ◽  
Vol 613 ◽  
pp. A32 ◽  
Author(s):  
Dongdong Ni

Context. The Juno spacecraft has significantly improved the accuracy of gravitational harmonic coefficients J4, J6 and J8 during its first two perijoves. However, there are still differences in the interior model predictions of core mass and envelope metallicity because of the uncertainties in the hydrogen-helium equations of state. New theoretical approaches or observational data are hence required in order to further constrain the interior models of Jupiter. A well constrained interior model of Jupiter is helpful for understanding not only the dynamic flows in the interior, but also the formation history of giant planets. Aims. We present the radial density profiles of Jupiter fitted to the Juno gravity field observations. Also, we aim to investigate our ability to constrain the core properties of Jupiter using its moment of inertia and tidal Love number k2 which could be accessible by the Juno spacecraft. Methods. In this work, the radial density profile was constrained by the Juno gravity field data within the empirical two-layer model in which the equations of state are not needed as an input model parameter. Different two-layer models are constructed in terms of core properties. The dependence of the calculated moment of inertia and tidal Love number k2 on the core properties was investigated in order to discern their abilities to further constrain the internal structure of Jupiter. Results. The calculated normalized moment of inertia (NMOI) ranges from 0.2749 to 0.2762, in reasonable agreement with the other predictions. There is a good correlation between the NMOI value and the core properties including masses and radii. Therefore, measurements of NMOI by Juno can be used to constrain both the core mass and size of Jupiter’s two-layer interior models. For the tidal Love number k2, the degeneracy of k2 is found and analyzed within the two-layer interior model. In spite of this, measurements of k2 can still be used to further constrain the core mass and size of Jupiter’s two-layer interior models.


1981 ◽  
Vol 93 ◽  
pp. 187-189
Author(s):  
J. Craig Wheeler ◽  
Michel Breger

The existence of blue stragglers in old open clusters with apparent mass more than twice the mass of the turnoff argues against simple binary mass transfer as the mechanism of their origin. The excess of blue stragglers to the red of the termination of the core hydrogen burning main sequence suggests that blue stragglers are not evolving normally. Stellar evolution models invoking mixing in an extended core region can account for the distribution of blue stragglers in the H-R diagram. Such models live longer, brightening and evolving further to the red before core hydrogen exhaustion than do normal stars. The distribution of blue stragglers in NGC 7789 is consistent with a range of mixed core mass fraction ~30–90 per cent and a narrow range in mass ~1.7–2.1 M⊙. Such evolution will result in a class of helium rich stars which have lived longer than normal and whose total mass exceeds the Chandrasekhar limit.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


1984 ◽  
Vol 108 ◽  
pp. 257-258
Author(s):  
Michael Rosa ◽  
Jorge Melnick ◽  
Preben Grosbol

The massive H II region NGC 3603 is the closest galactic counterpart to the giant LMC nebula 30 Dor. Walborn (1973) first compared the ionizing OB/WR clusters of the two H II regions and suggested that R 136, the unresolved luminous WR + 0 type central object of 30 Dor, might be a multiple system like the core region of NGC 3603. Suggestions that the dominant component of R 136, i.e. R 136A, might be either a single or a very few supermassive and superluminous stars (Schmidt-Kaler and Feitzinger 1982, Savage et al. 1983) have recently been disputed by Moffat and Seggewiss (1983) and Melnick (1983), who have presented spectroscopic and photometric evidence to support the hypothesis of an unresolved cluster of stars. We have extended Walborn's original comparison of the apparent morphology of the two clusters by digital treatment of the images to simulate how the galactic cluster would look like if it were located in the LMC


Sign in / Sign up

Export Citation Format

Share Document