scholarly journals Chemical mixing in low mass stars

2019 ◽  
Vol 633 ◽  
pp. A23 ◽  
Author(s):  
M. Deal ◽  
M.-J. Goupil ◽  
J. P. Marques ◽  
D. R. Reese ◽  
Y. Lebreton

Context. When modelling stars with masses higher than 1.2 M⊙ with no observed chemical peculiarity, atomic diffusion is often neglected because, on its own, it causes unrealistic surface abundances compared with those observed. The reality is that atomic diffusion is in competition with other transport processes. Rotation is one of the processes able to prevent excessively strong surface abundance variations. Aims. The purpose of this study is to quantify the opposite or conjugated effects of atomic diffusion (including radiative acceleration) and rotationally induced mixing in stellar models of low mass stars, and to assess whether rotational mixing is able to prevent the strong abundance variations induced by atomic diffusion in F-type stars. Our second goal is to estimate the impact of neglecting both rotational mixing and atomic diffusion in stellar parameter inferences for stars with masses higher than 1.3 M⊙. Methods. Using the Asteroseismic Inference on a Massive Scale (AIMS) stellar parameter inference code, we infer the masses and ages of a set of representative artificial stars for which models were computed with the Code d’Evolution Stellaire Adaptatif et Modulaire (CESTAM; the T stands for Transport) evolution code, taking into account rotationally induced mixing and atomic diffusion, including radiative acceleration. The observed constraints are asteroseismic and classical properties. The grid of stellar models used for the optimization search include neither atomic diffusion nor rotationally induced mixing. The differences between real and retrieved parameters then provide an estimate of the errors made when neglecting transport processes in stellar parameter inference. Results. We show that for masses lower than 1.3 M⊙, rotation dominates the transport of chemical elements and strongly reduces the effect of atomic diffusion, with net surface abundance modifications similar to solar values. At higher mass, atomic diffusion and rotation are competing equally. Above 1.44 M⊙, atomic diffusion dominates in stellar models with initial rotation lower than 80 km s−1 producing a chemical peculiarity which is not observed in Kepler Legacy stars. This indicates that a transport process of chemical elements is missing, probably linked to the missing transport process of angular momentum needed to explain rotation profiles in solar-like stars. Importantly, neglecting rotation and atomic diffusion (including radiative acceleration) in the models, when inferring the parameters of F-type stars, may lead to respective errors of ≈5%, ≈2.5%, and ≈25% for stellar masses, radii, and ages. Conclusions. Atomic diffusion (including radiative acceleration) and rotational mixing should be taken into account in stellar models in order to determine accurate stellar parameters. When atomic diffusion and shellular rotation are both included, they enable stellar evolution codes to reproduce the observed metal and helium surface abundances for stars with masses up to 1.4 M⊙ at solar metallicity. However, if rotation is actually uniform for these stars (as observations seem to indicate), then an additional chemical mixing process is needed together with a revised formulation of rotational mixing. For higher masses, an additional mixing process is needed in any case.

2008 ◽  
Vol 4 (S252) ◽  
pp. 163-174 ◽  
Author(s):  
Corinne Charbonnel ◽  
Suzanne Talon

AbstractLow-mass stars exhibit, at all stages of their evolution, the signatures of complex physical processes that require challenging modeling beyond standard stellar theory. In this review, we recall the most striking observational evidences that probe the interaction and interdependence of various transport processes of chemicals and angular momentum in these objects. We then focus on the impact of atomic diffusion, large scale mixing due to rotation, and internal gravity waves on stellar properties on the main sequence and slightly beyond.


2009 ◽  
Vol 5 (S268) ◽  
pp. 441-446
Author(s):  
Corinne Charbonnel ◽  
Nadège Lagarde

AbstractThermohaline mixing has been recently identified as the dominating process that governs the photospheric composition of low-mass bright giant stars (Charbonnel & Zahn 2007a). Here we present the predictions of stellar models computed with the code STAREVOL that takes into account this mechanism together with rotational mixing and atomic diffusion. We compare our theorical predictions with recent observations and discuss how the corresponding yields for 3He are compatible with the observed behaviour of this light element in our Galaxy.


2021 ◽  
Vol 507 (4) ◽  
pp. 5747-5757
Author(s):  
Ana Brito ◽  
Ilídio Lopes

ABSTRACT All cool stars with outer convective zones have the potential to exhibit stochastically excited stellar oscillations. In this work, we explore the outer layers of stars less massive than the Sun. In particular, we have computed a set of stellar models ranging from 0.4 to 0.9 M⊙ with the aim at determining the impact on stellar oscillations of two physical processes occurring in the envelopes of these stars. Namely, the partial ionization of chemical elements and the electrostatic interactions between particles in the outer layers. We find that alongside with partial ionization, Coulomb effects also impact the acoustic oscillation spectrum. We confirm the well-known result that as the mass of a star decreases, the electrostatic interactions between particles become relevant. We found that their impact on stellar oscillations increases with decreasing mass, and for the stars with the lowest masses (M ≲ 0.6 M⊙), it is shown that Coulomb effects dominate over partial ionization processes producing a strong scatter on the acoustic modes. The influence of Coulomb interactions on the sound-speed gradient profile produces a strong oscillatory behaviour with diagnostic potential for the future.


2018 ◽  
Vol 618 ◽  
pp. A10 ◽  
Author(s):  
M. Deal ◽  
G. Alecian ◽  
Y. Lebreton ◽  
M. J. Goupil ◽  
J. P. Marques ◽  
...  

Context. Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling is usually taken into account, and is essential for helioseismic studies. On the other hand, radiative accelerations are rarely accounted for, act differently on the various chemical elements, and can strongly counteract gravity in some stellar mass domains. The resulting variations in the abundance profiles may significantly affect the structure of the star. Aims. The aim of this study is to determine whether radiative accelerations impact the structure of solar-like oscillating main-sequence stars observed by asteroseismic space missions. Methods. We implemented the calculation of radiative accelerations operating on C, N, O, Ne, Na, Mg, Al, Si, S, Ca, and Fe in the CESTAM code using the single-valued parameter method. We built and compared several grids of stellar models including gravitational settling, some with and others without radiative accelerations. We considered masses in the range [0.9, 1.5] M⊙ and three values of the metallicity around the solar value. For each metallicity we determined the mass range where differences between models due to radiative accelerations exceed the uncertainties of global seismic parameters of the Kepler Legacy sample or expected for PLATO observations. Results. We found that radiative accelerations may not be neglected for stellar masses higher than 1.1 M⊙ at solar metallicity. The difference in age due to their inclusion in models can reach 9% for the more massive stars of our grids. We estimated that the percentage of the PLATO core program stars whose modelling would require radiative accelerations ranges between 33% and 58% depending on the precision of the seismic data. Conclusions. We conclude that in the context of Kepler, TESS, and PLATO missions which provide (or will provide) high-quality seismic data, radiative accelerations can have a significant effect when properly inferring the properties of solar-like oscillators. This is particularly important for age inferences. However, the net effect for each individual star results from the competition between atomic diffusion including radiative accelerations and other internal transport processes. Rotationally induced transport processes for instance are believed to reduce the effects of atomic diffusion. This will be investigated in a forthcoming companion paper.


2020 ◽  
Vol 493 (2) ◽  
pp. 2329-2338
Author(s):  
B Hoyman ◽  
Ö Çakırlı

ABSTRACT Solar-type stars in eclipsing binaries are proving to be a remarkable resource of knowledge for testing models of stellar evolution, as spectroscopic and photometric studies have opened up a window into their interiors. Until recently, many cases have been worked out with Kepler data. In an ongoing effort to elucidate this research, we examine five detached eclipsing binaries, selected from the Kepler catalogue. There is a well-known stellar parameter discrepancy for low-mass stars, in that the observed radii and masses are often larger and stars overluminous than predicted by theory by several per cent. In our samples, we found five double-lined binaries, with solar-type stars dominating the spectrum. The orbital and light-curve solutions were found for them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. An important aspect of this work is that the calculated stellar radii and masses are consistent with theoretical models within the uncertainties, whereas the estimated temperatures from the disentangled spectra of the components are no different than predicted.


Author(s):  
Juan Carlos Morales ◽  
José Gallardo ◽  
Ignasi Ribas ◽  
Carme Jordi ◽  
Isabelle Baraffe ◽  
...  

2013 ◽  
Vol 9 (S302) ◽  
pp. 112-113 ◽  
Author(s):  
Luiz T. S. Mendes ◽  
Natália R. Landin ◽  
Luiz P. R. Vaz

AbstractWe report our present efforts for introducing magnetic fields in the ATON stellar evolution code code, which now evolved to truly modifying the stellar structure equations so that they can incorporate the effects of an imposed, large-scale magnetic field. Preliminary results of such an approach, as applied to low-mass stellar models, are presented and discussed.


2004 ◽  
Vol 193 ◽  
pp. 489-497 ◽  
Author(s):  
Santi Cassisi

AbstractWe briefly review the main problems related to the computation of the evolution of intermediate-mass stars: the treatment of turbulent convection and the occurrence of blue loops during the core He-burning phase. It is shown that, in order to obtain more accurate and reliable stellar models for this class of stars, one has to consider all possible theoretical and observational constraints. These include observations of low-mass stars to constrain the treatment of envelope convection, and the analysis of the pulsational behaviour of Cepheid stars.


2009 ◽  
Vol 5 (S265) ◽  
pp. 205-208
Author(s):  
Corinne Charbonnel ◽  
Nadège Lagarde

AbstractThermohaline mixing has been recently identified as the dominating process that governs the photospheric composition of low-mass bright giant stars (Charbonnel & Zahn 2007). Here we present the predictions of stellar models computed with the code STAREVOL taking into account this mechanism together with rotational mixing and atomic diffusion. We compare our theorical predictions with recent observations and discuss how the corresponding yields for 3He are compatible with the observed behaviour of this light element in our Galaxy.


2019 ◽  
Vol 627 ◽  
pp. A153 ◽  
Author(s):  
Ramón Iglesias-Marzoa ◽  
María J. Arévalo ◽  
Mercedes López-Morales ◽  
Guillermo Torres ◽  
Carlos Lázaro ◽  
...  

Context. Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their low luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. Aims. We aim to investigate the mass–radius relation for low-mass stars and the cause of the deviation of the observed radii in low-mass detached eclipsing binary stars (LMDEB) from theoretical stellar models. Methods. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov chain Monte-Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. Results. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1 = 0.6402 ± 0.0052 M⊙ and M2 = 0.6511 ± 0.0052 M⊙ and radii of R1 = 0.687+0.017−0.024 R⊙ and R2 = 0.672+0.018−0.022 R⊙. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i = 86.22 ± 0.61 degrees and a period of P = 0.5607222(2) d. The distance to the system is estimated to be d = 135.2+7.6−7.9 pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log (age) ∼ 8 based on the Mbol–log Teff diagram. Conclusions. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.


Sign in / Sign up

Export Citation Format

Share Document