scholarly journals Interactions among intermediate redshift galaxies

2020 ◽  
Vol 639 ◽  
pp. A30
Author(s):  
Persis Misquitta ◽  
Micah Bowles ◽  
Andreas Eckart ◽  
Madeleine Yttergren ◽  
Gerold Busch ◽  
...  

We present the properties of the central supermassive black holes and the host galaxies of the interacting object SDSS J134420.86+663717.8. We obtained optical long slit spectroscopy data from the Large Binocular Telescope using the Multi Object Double Spectrograph. Analysing the spectra revealed several strong broad and narrow emission lines of ionised gas in the nuclear region of one galaxy, whereas only narrow emission lines were visible for the second galaxy. The optical spectra were used to plot diagnostic diagrams, deduce rotation curves of the two galaxies, and calculate the masses of the central supermassive black holes. We find that the galaxy with broad emission line features has Seyfert 1 properties, while the galaxy with only narrow emission line features seems to be star-forming in nature. Furthermore, we find that the masses of the central supermassive black holes are almost equal at a few times 107 M⊙. Additionally, we present a simple N-body simulation to shed some light on the initial conditions of the progenitor galaxies. We find that for an almost orthogonal approach of the two interacting galaxies, the model resembles the optical image of the system.

Author(s):  
Takuma Izumi ◽  
Masafusa Onoue ◽  
Yoshiki Matsuoka ◽  
Tohru Nagao ◽  
Michael A Strauss ◽  
...  

Abstract We present ALMA [C ii] line and far-infrared (FIR) continuum observations of three $z \gt 6$ low-luminosity quasars ($M_{\rm 1450} \gt -25$ mag) discovered by our Subaru Hyper Suprime-Cam (HSC) survey. The [C ii] line was detected in all three targets with luminosities of $(2.4\mbox{--}9.5) \times 10^8\, L_{\odot }$, about one order of magnitude smaller than optically luminous ($M_{\rm 1450} \lesssim -25$ mag) quasars. The FIR continuum luminosities range from $\lt 9 \times 10^{10}\, L_{\odot }$ (3 $\sigma$ limit) to ${\sim } 2 \times 10^{12}\, L_{\odot }$, indicating a wide range in star formation rates in these galaxies. Most of the HSC quasars studied thus far show [C ii]/ FIR luminosity ratios similar to local star-forming galaxies. Using the [C ii]-based dynamical mass ($M_{\rm dyn}$) as a surrogate for bulge stellar mass ($M_{\rm\, bulge}$), we find that a significant fraction of low-luminosity quasars are located on or even below the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation, particularly at the massive end of the galaxy mass distribution. In contrast, previous studies of optically luminous quasars have found that black holes are overmassive relative to the local relation. Given the low luminosities of our targets, we are exploring the nature of the early co-evolution of supermassive black holes and their hosts in a less biased way. Almost all of the quasars presented in this work are growing their black hole mass at a much higher pace at $z \sim 6$ than the parallel growth model, in which supermassive black holes and their hosts grow simultaneously to match the local $M_{\rm\, BH}$–$M_{\rm\, bulge}$ relation at all redshifts. As the low-luminosity quasars appear to realize the local co-evolutionary relation even at $z \sim 6$, they should have experienced vigorous starbursts prior to the currently observed quasar phase to catch up with the relation.


2020 ◽  
Vol 501 (2) ◽  
pp. 2210-2230
Author(s):  
Nhut Truong ◽  
Annalisa Pillepich ◽  
Norbert Werner

ABSTRACT Recent X-ray observations have revealed remarkable correlations between the masses of central supermassive black holes (SMBHs) and the X-ray properties of the hot atmospheres permeating their host galaxies, thereby indicating the crucial role of the atmospheric gas in tracing SMBH growth in the high-mass regime. We examine this topic theoretically using the IllustrisTNG cosmological simulations and provide insights to the nature of this SMBH – gaseous halo connection. By carrying out a mock X-ray analysis for a mass-selected sample of TNG100 simulated galaxies at $z$ = 0, we inspect the relationship between the masses of SMBHs and the hot gas temperatures and luminosities at various spatial and halo scales – from galactic (∼Re) to group/cluster scales (∼R500c). We find strong SMBH-X-ray correlations mostly in quenched galaxies and find that the correlations become stronger and tighter at larger radii. Critically, the X-ray temperature (kBTX) at large radii (r ≳ 5Re) traces the SMBH mass with a remarkably small scatter (∼0.2 dex). The relations emerging from IllustrisTNG are broadly consistent with those obtained from recent X-ray observations. Overall, our analysis suggests that, within the framework of IllustrisTNG, the present-time MBH–kBTX correlations at the high-mass end (MBH ≳ 108M⊙) are fundamentally a reflection of the SMBH mass–halo mass relation, which at such high masses is set by the hierarchical assembly of structures. The exact form, locus, and scatter of those scaling relations are, however, sensitive to feedback processes such as those driven by star formation and SMBH activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Peter Erwin ◽  
Dimitri Alexei Gadotti

Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of thebulgecomponent of galaxies, the masses of NSCs correlate much better with thetotalgalaxy stellar mass. In addition, the mass ratioMNSC/M⋆, totfor NSCs in spirals (at least those with Hubble types Sc and later) is typically an order of magnitude smaller than the mass ratioMBH/M⋆, bulof SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.


2019 ◽  
Vol 490 (3) ◽  
pp. 4133-4153 ◽  
Author(s):  
Sebastian Bustamante ◽  
Volker Springel

ABSTRACT It is well established that the properties of supermassive black holes (BHs) and their host galaxies are correlated through scaling relations. While hydrodynamical cosmological simulations have begun to account for the coevolution of BHs and galaxies, they typically have neglected the BH spin, even though it may play an important role in modulating the growth and feedback of BHs. Here we introduce a new sub-grid model for the BH spin evolution in the moving-mesh code arepo in order to improve the physical faithfulness of the BH modelling in galaxy formation simulations. We account for several different channels of spin evolution, in particular gas accretion through a Shakura–Sunyaev α-disc, chaotic accretion, and BH mergers. For BH feedback, we extend the IllustrisTNG model, which considers two different BH feedback modes, a thermal quasar mode for high accretion states and a kinetic mode for low Eddington ratios, with a self-consistent accounting of spin-dependent radiative efficiencies and thus feedback strength. We find that BHs with a mass $M_{\mbox{{bh}}}\lesssim 10^{8}\, {\rm M}_{\odot }$ reach high spin values as they typically evolve in the coherent gas accretion regime, in which consecutive accretion episodes are aligned. On the other hand, BHs with a mass $M_{\mbox{{bh}}}\gtrsim 10^{8}\, {\rm M}_{\odot }$ have lower spins as BH mergers become more frequent, and their accretion discs fragment due to self-gravity, inducing chaotic accretion. We also explore the hypothesis that the transition between the quasar and kinetic feedback modes is mediated by the accretion mode of the BH disc itself, i.e. the kinetic feedback mode is activated when the disc enters the self-gravity regime instead of by an ad hoc switch tied to the BH mass. We find excellent agreement between the galaxy and BH populations for this approach and the fiducial TNG model with no spin evolution. Furthermore, our new approach alleviates a tension in the galaxy morphology–colour relation of the original TNG model.


2018 ◽  
Vol 610 ◽  
pp. L7 ◽  
Author(s):  
B. Husemann ◽  
G. Worseck ◽  
F. Arrigoni Battaia ◽  
T. Shanks

A prediction of the current paradigm of the hierarchical assembly of galaxies is the presence of supermassive dual black holes at separations of a few kpc or less. In this context, we report the detection of a narrow-line emitter within the extended Lyα nebula (~120 kpc diameter) of the luminous radio-quiet quasi-stellar object (QSO) LBQS 0302–0019 at z = 3.286. We identify several high-ionization narrow emission lines (He II, C IV, C III) associated with this point-like source, which we have named “Jil”, which is only ~20 kpc (2.̋9) away from the QSO in projection. Emission-line diagnostics confirm that the source is likely powered by photoionization of an obscured active galactic nucleus (AGN) three orders of magnitude fainter than the QSO. The system represents the tightest unobscured/obscured dual AGN currently known at z > 3, highlighting the power of MUSE to detect these elusive systems.


2019 ◽  
Vol 488 (1) ◽  
pp. L134-L142 ◽  
Author(s):  
K Lakhchaura ◽  
N Truong ◽  
N Werner

ABSTRACT We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between Re and 5Re, for a sample of 47 early-type galaxies observed by the Chandra X-ray Observatory. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs (Mtot) and their central SMBH masses (MBH). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.


2007 ◽  
Vol 3 (S245) ◽  
pp. 233-234
Author(s):  
A. Beifiori ◽  
E. M. Corsini ◽  
E. Dalla Bontà ◽  
A. Pizzella ◽  
L. Coccato ◽  
...  

AbstractThe growth of supermassive black holes (SMBHs) appears to be closely linked with the formation of spheroids. There is a pressing need to acquire better statistics on SMBH masses, since the existing samples are preferentially weighted toward early-type galaxies with very massive SMBHs. With this motivation we started a project aimed at measuring upper limits on the mass of the SMBHs that can be present in the center of all the nearby galaxies (D < 100 Mpc) for which STIS/G750M spectra are available in the HST archive. These upper limits will be derived by modeling the central emission-line widths ([N II] λλ6548, 6583, Hα and [S II] λλ6716, 6731) observed over an aperture of ~01 (R < 50 pc). Here we present our preliminary results for a subsample of 76 bulges.


2009 ◽  
Vol 692 (1) ◽  
pp. 856-868 ◽  
Author(s):  
A. Beifiori ◽  
M. Sarzi ◽  
E. M. Corsini ◽  
E. Dalla Bontà ◽  
A. Pizzella ◽  
...  

2019 ◽  
Vol 487 (3) ◽  
pp. 3650-3663 ◽  
Author(s):  
J K Hoormann ◽  
P Martini ◽  
T M Davis ◽  
A King ◽  
C Lidman ◽  
...  

ABSTRACT Black hole mass measurements outside the local Universe are critically important to derive the growth of supermassive black holes over cosmic time, and to study the interplay between black hole growth and galaxy evolution. In this paper, we present two measurements of supermassive black hole masses from reverberation mapping (RM) of the broad C iv emission line. These measurements are based on multiyear photometry and spectroscopy from the Dark Energy Survey Supernova Program (DES-SN) and the Australian Dark Energy Survey (OzDES), which together constitute the OzDES RM Program. The observed reverberation lag between the DES continuum photometry and the OzDES emission line fluxes is measured to be $358^{+126}_{-123}$ and $343^{+58}_{-84}$ d for two quasars at redshifts of 1.905 and 2.593, respectively. The corresponding masses of the two supermassive black holes are 4.4 × 109 and 3.3 × 109 M⊙, which are among the highest redshift and highest mass black holes measured to date with RM studies. We use these new measurements to better determine the C iv radius−luminosity relationship for high-luminosity quasars, which is fundamental to many quasar black hole mass estimates and demographic studies.


2019 ◽  
Vol 15 (S352) ◽  
pp. 139-143
Author(s):  
Takuma Izumi ◽  
Masafusa Onoue ◽  
Yoshiki Matsuoka ◽  
Tohru Nagao ◽  
Michael A. Strauss ◽  
...  

AbstractWe present ALMA [CII] line and far-infrared (FIR) continuum observations of seven z > 6 low-luminosity quasars (M1450 > −25 mag) discovered by our on-going Subaru Hyper Suprime-Cam survey. The [CII] line was detected in all targets with luminosities of ∼(2−10) × 108 L⊙, about one order of magnitude smaller than optically luminous quasars. Also found was a wide scatter of FIR continuum luminosity, ranging from LFIR < 1011L⊙ to ∼2 × 1012L⊙. With the [CII]-based dynamical mass, we suggest that a significant fraction of low-luminosity quasars are located on or even below the local Magorrian relation, particularly at the massive end of the galaxy mass distribution. This is a clear contrast to the previous finding that luminous quasars tend to have overmassive black holes relative to the relation. Our result is expected to show a less-biased nature of the early co-evolution of black holes and their host galaxies.


Sign in / Sign up

Export Citation Format

Share Document