scholarly journals First detection of the 448 GHz ortho-H2O line at high redshift: probing the structure of a starburst nucleus at z = 3.63

2020 ◽  
Vol 634 ◽  
pp. L3 ◽  
Author(s):  
C. Yang ◽  
E. González-Alfonso ◽  
A. Omont ◽  
M. Pereira-Santaella ◽  
J. Fischer ◽  
...  

Submillimeter rotational lines of H2O are a powerful probe in warm gas regions of the interstellar medium (ISM), tracing scales and structures ranging from kiloparsec disks to the most compact and dust-obscured regions of galactic nuclei. The ortho-H2O(423 − 330 line at 448 GHz, which has recently been detected in a local luminous infrared galaxy, offers a unique constraint on the excitation conditions and ISM properties in deeply buried galaxy nuclei because the line requires high far-infrared optical depths to be excited. In this letter, we report the first high-redshift detection of the 448 GHz H2O(423–330) line using ALMA in a strongly lensed submillimeter galaxy (SMG) at z = 3.63. After correcting for magnification, the luminosity of the 448 GHz H2O line is ∼106 L⊙. In combination with three other previously detected H2O lines, we build a model that resolves the dusty ISM structure of the SMG, and find that it is composed of a ∼1 kpc optically thin (optical depth at 100 μm τ100 ∼ 0.3) disk component with a dust temperature Tdust ≈ 50 K that emits a total infrared power of 5 × 1012 L⊙ with a surface density ΣIR = 4 × 1011 L⊙ kpc−2, and a very compact (0.1 kpc) heavily dust-obscured (τ100 ≳ 1) nuclear core with very warm dust (100 K) and ΣIR = 8 × 1012 L⊙ kpc−2. The H2O abundance in the core component, XH2O ∼ (0.3–5) × 10−5, is at least one order of magnitude higher than in the disk component. The optically thick core has the characteristic properties of an Eddington-limited starburst, providing evidence that radiation pressure on dust is capable of supporting the ISM in buried nuclei at high redshifts. The multicomponent ISM structure revealed by our models illustrates that dust and molecules such as H2O are present in regions that are characterized by highly differing conditions and scales, extending from the nucleus to more extended regions of SMGs.

1996 ◽  
Vol 171 ◽  
pp. 415-415
Author(s):  
Y.D. Mayya ◽  
T.N. Rengarajan

A study of 8 nearby spiral galaxies (NGC 2903, 3079, 3198, 3628, 4303, 4321, 4656 and 6946) is carried out using the radio continuum (RC) and far infrared (FIR) images at 1′ resolution. These images are used to study the radial gradients in the ratios of FIR to RC (Q60 and Q100), warm dust temperature (Td(60/100)) etc. The main results are illustrated with NGC 2903 as an example in Fig. 1, where azimuthally averaged quantities are plotted. Td(60/100) decreases away from the center (45–25 K), increasing again by ∼ 5 K in outer galaxies. Typically Q60 decreases by a factor of three away from the center in a given galaxy, but has an order of magnitude spread in the pixel values over all the galaxies. In contrast, Q100 shows flatter gradient, which is expected from the observed temperature gradient. 20 cm RC emission profile is also shown in Fig. 1. The RC and FIR profiles can be fitted by a combination of central gaussian and exponential disk components. In general RC and FIR have about the same fraction of exponential component with the exception of NGC 3628, in which the FIR is dominated by the gaussian while the RC is mostly disk component (see Fig. 2). In 5 of the remaining 7 galaxies, the exponential component contributes > 50% of the total. In general RC scale lengths are larger than the FIR.


2018 ◽  
Vol 620 ◽  
pp. A118 ◽  
Author(s):  
C. A. Negrete ◽  
D. Dultzin ◽  
P. Marziani ◽  
D. Esparza ◽  
J. W. Sulentic ◽  
...  

Context. The most highly accreting quasars are of special interest in studies of the physics of active galactic nuclei (AGNs) and host galaxy evolution. Quasars accreting at high rates (L/LEdd ∼ 1) hold promise for use as “standard candles”: distance indicators detectable at very high redshift. However, their observational properties are still largely unknown. Aims. We seek to identify a significant number of extreme accretors. A large sample can clarify the main properties of quasars radiating near L/LEdd ∼ 1 (in this paper they are designated as extreme Population A quasars or simply as extreme accretors) in the Hβ spectral range for redshift ≲0.8. Methods. We use selection criteria derived from four-dimensional Eigenvector 1 (4DE1) studies to identify and analyze spectra for a sample of 334 candidate sources identified from the SDSS DR7 database. The source spectra were chosen to show a ratio RFeII between the FeII emission blend at λ4570 and Hβ, RFeII > 1. Composite spectra were analyzed for systematic trends as a function of Fe II strength, line width, and [OIII] strength. We introduced tighter constraints on the signal-to-noise ratio (S/N) and RFeII values that allowed us to isolate sources most likely to be extreme accretors. Results. We provide a database of detailed measurements. Analysis of the data allows us to confirm that Hβ shows a Lorentzian function with a full width at half maximum (FWHM) of Hβ ≤ 4000 km s−1. We find no evidence for a discontinuity at 2000 km s−1 in the 4DE1, which could mean that the sources below this FWHM value do not belong to a different AGN class. Systematic [OIII] blue shifts, as well as a blueshifted component in Hβ are revealed. We interpret the blueshifts as related to the signature of outflowing gas from the quasar central engine. The FWHM of Hβ is still affected by the blueshifted emission; however, the effect is non-negligible if the FWHM Hβ is used as a “virial broadening estimator” (VBE). We emphasize a strong effect of the viewing angle on Hβ broadening, deriving a correction for those sources that shows major disagreement between virial and concordance cosmology luminosity values. Conclusions. The relatively large scatter between concordance cosmology and virial luminosity estimates can be reduced (by an order of magnitude) if a correction for orientation effects is included in the FWHM Hβ value; outflow and sample definition yield relatively minor effects.


2019 ◽  
Vol 623 ◽  
pp. A172 ◽  
Author(s):  
C. Circosta ◽  
C. Vignali ◽  
R. Gilli ◽  
A. Feltre ◽  
F. Vito ◽  
...  

We present a multiwavelength study of seven active galactic nuclei (AGN) at spectroscopic redshift >2.5 in the 7 Ms Chandra Deep Field South that were selected for their good far-infrared (FIR) and submillimeter (submm) detections. Our aim is to investigate the possibility that the obscuration observed in the X-rays can be produced by the interstellar medium (ISM) of the host galaxy. Based on the 7 Ms Chandra spectra, we measured obscuring column densities NH,  X in excess of 7 × 1022 cm−2 and intrinsic X-ray luminosities LX >  1044 erg s−1 for our targets, as well as equivalent widths for the Fe Kα emission line EWrest ≳ 0.5−1 keV. We built the UV-to-FIR spectral energy distributions (SEDs) by using broadband photometry from the CANDELS and Herschel catalogs. By means of an SED decomposition technique, we derived stellar masses (M* ∼ 1011 M⊙), IR luminosities (LIR >  1012 L⊙), star formation rates (SFR ∼ 190−1680 M⊙ yr−1) and AGN bolometric luminosities (Lbol ∼ 1046 erg s−1) for our sample. We used an empirically calibrated relation between gas masses and FIR/submm luminosities and derived Mgas ∼ 0.8−5.4 × 1010 M⊙. High-resolution (0.3−0.7″) ALMA data (when available, CANDELS data otherwise) were used to estimate the galaxy size and hence the volume enclosing most of the ISM under simple geometrical assumptions. These measurements were then combined to derive the column density associated with the ISM of the host, which is on the order of NH,  ISM ∼ 1023−24 cm−2. The comparison between the ISM column densities and those measured from the X-ray spectral analysis shows that they are similar. This suggests that at least at high redshift, significant absorption on kiloparsec scales by the dense ISM in the host likely adds to or substitutes that produced by circumnuclear gas on parsec scales (i.e., the torus of unified models). The lack of unobscured AGN among our ISM-rich targets supports this scenario.


2002 ◽  
Vol 12 ◽  
pp. 453-455
Author(s):  
D.J. Wilner

The number of spectroscopically confirmed galaxies at high redshift is increasing rapidly, with many being found efficiently by deep optical imaging and color selection. In parallel, a confluence of technical developments is bringing rapid progress to the domain of observations of cold gas and dust at high redshift. Large telescopes operating at high, dry sites, with a new generation of sensitive detectors, together with recent satellite missions, are opening up new areas of study through observations of dust continuum emission and associated atomic and molecular emission and absorption lines. These data bear directly on fundamental questions of cosmic evolution by probing the ordinary cool material that forms stars and fuels active galactic nuclei. Analysis of data from theCOBEsatellite confirms the presence of a diffuse far-infrared background from a widespread population of distant dusty objects. The global energetics of the optical and far-infrared backgrounds suggest that perhaps half of distant activity may be enshrouded by dust. Understanding the nature and redshifts of the sources responsible for these emissions is profoundly important. The intent of Joint Discussion 9, between Division X (Radio Astronomy) and Division XIII (Galaxies and the Universe), was to provide a forum to present observations from this newly accessible realm and to consider the astrophysical implications.


2021 ◽  
Vol 645 ◽  
pp. A49 ◽  
Author(s):  
Eduardo González-Alfonso ◽  
Miguel Pereira-Santaella ◽  
Jaqueline Fischer ◽  
Santiago García-Burillo ◽  
Chentao Yang ◽  
...  

Galaxies with nuclear bars are believed to efficiently drive gas inward, generating a nuclear starburst and possibly an active galactic nucleus. We confirm this scenario for the isolated, double-barred, luminous infrared galaxy ESO 320-G030 based on an analysis of Herschel and ALMA spectroscopic observations. Herschel/PACS and SPIRE observations of ESO 320-G030 show absorption or emission in 18 lines of H2O, which we combine with the ALMA H2O 423 − 330 448 GHz line (Eupper ∼ 400 K) and continuum images to study the physical properties of the nuclear region. Radiative transfer models indicate that three nuclear components are required to account for the multi-transition H2O and continuum data. An envelope, with radius R ∼ 130 − 150 pc, dust temperature Tdust ≈ 50 K, and NH2 ∼ 2 × 1023 cm−2, surrounds a nuclear disk with R ∼ 40 pc that is optically thick in the far-infrared (τ100 μm ∼ 1.5 − 3, NH2 ∼ 2 × 1024 cm−2). In addition, an extremely compact (R ∼ 12 pc), warm (≈100 K), and buried (τ100 μm >  5, NH2 ≳ 5 × 1024 cm−2) core component is required to account for the very high-lying H2O absorption lines. The three nuclear components account for 70% of the galaxy luminosity (SFR ∼ 16 − 18 M⊙ yr−1). The nucleus is fed by a molecular inflow observed in CO 2-1 with ALMA, which is associated with the nuclear bar. With decreasing radius (r = 450 − 225 pc), the mass inflow rate increases up to Ṁinf ∼ 20 Ṁ yr−1, which is similar to the nuclear star formation rate (SFR), indicating that the starburst is sustained by the inflow. At lower r, ∼100 − 150 pc, the inflow is best probed by the far-infrared OH ground-state doublets, with an estimated Ṁinf ∼ 30 Ṁ yr−1. The inferred short timescale of ∼20 Myr for nuclear gas replenishment indicates quick secular evolution, and indicates that we are witnessing an intermediate stage (< 100 Myr) proto-pseudobulge fed by a massive inflow that is driven by a strong nuclear bar. We also apply the H2O model to the Herschel far-infrared spectroscopic observations of H218O, OH, 18OH, OH+, H2O+, H3O+, NH, NH2, NH3, CH, CH+, 13CH+, HF, SH, and C3, and we estimate their abundances.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


Author(s):  
Marta B. Silva ◽  
Ely D. Kovetz ◽  
Garrett K. Keating ◽  
Azadeh Moradinezhad Dizgah ◽  
Matthieu Bethermin ◽  
...  

AbstractThis paper outlines the science case for line-intensity mapping with a space-borne instrument targeting the sub-millimeter (microwaves) to the far-infrared (FIR) wavelength range. Our goal is to observe and characterize the large-scale structure in the Universe from present times to the high redshift Epoch of Reionization. This is essential to constrain the cosmology of our Universe and form a better understanding of various mechanisms that drive galaxy formation and evolution. The proposed frequency range would make it possible to probe important metal cooling lines such as [CII] up to very high redshift as well as a large number of rotational lines of the CO molecule. These can be used to trace molecular gas and dust evolution and constrain the buildup in both the cosmic star formation rate density and the cosmic infrared background (CIB). Moreover, surveys at the highest frequencies will detect FIR lines which are used as diagnostics of galaxies and AGN. Tomography of these lines over a wide redshift range will enable invaluable measurements of the cosmic expansion history at epochs inaccessible to other methods, competitive constraints on the parameters of the standard model of cosmology, and numerous tests of dark matter, dark energy, modified gravity and inflation. To reach these goals, large-scale structure must be mapped over a wide range in frequency to trace its time evolution and the surveyed area needs to be very large to beat cosmic variance. Only a space-borne mission can properly meet these requirements.


2018 ◽  
Vol 609 ◽  
pp. A75 ◽  
Author(s):  
N. Falstad ◽  
S. Aalto ◽  
J. G. Mangum ◽  
F. Costagliola ◽  
J. S. Gallagher ◽  
...  

Context. Feedback in the form of mass outflows driven by star formation or active galactic nuclei is a key component of galaxy evolution. The luminous infrared galaxy Zw 049.057 harbours a compact obscured nucleus with a possible far-infrared signature of outflowing molecular gas. Due to the high optical depths at far-infrared wavelengths, however, the interpretation of the outflow signature is uncertain. At millimeter and radio wavelengths, the radiation is better able to penetrate the large columns of gas and dust responsible for the obscuration. Aims. We aim to investigate the molecular gas distribution and kinematics in the nucleus of Zw 049.057 in order to confirm and locate the molecular outflow, with the ultimate goal to understand how the nuclear activity affects the host galaxy. Methods. We used high angular resolution observations from the Submillimeter Array (SMA), the Atacama Large Millimeter/submillimeter Array (ALMA), and the Karl G. Jansky Very Large Array (VLA) to image the CO J = 2–1 and J = 6–5 emission, the 690 GHz continuum, the radio centimeter continuum, and absorptions by rotationally excited OH. Results. The CO line profiles exhibit wings extending ~ 300 km s-1 beyond the systemic velocity. At centimeter wavelengths, we find a compact (~ 40 pc) continuum component in the nucleus, with weaker emission extending several 100 pc approximately along the major and minor axes of the galaxy. In the OH absorption lines toward the compact continuum, wings extending to a similar velocity as for the CO are only seen on the blue side of the profile. The weak centimeter continuum emission along the minor axis is aligned with a highly collimated, jet-like dust feature previously seen in near-infrared images of the galaxy. Comparison of the apparent optical depths in the OH lines indicate that the excitation conditions in Zw 049.057 differ from those within other OH megamaser galaxies. Conclusions. We interpret the wings in the spectral lines as signatures of a nuclear molecular outflow. A relation between this outflow and the minor axis radio feature is possible, although further studies are required to investigate this possible association and understand the connection between the outflow and the nuclear activity. Finally, we suggest that the differing OH excitation conditions are further evidence that Zw 049.057 is in a transition phase between megamaser and kilomaser activity.


2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


Sign in / Sign up

Export Citation Format

Share Document