scholarly journals First spectroscopic study of ionised gas emission lines in the extreme low surface brightness galaxy Malin 1

2020 ◽  
Vol 637 ◽  
pp. A21
Author(s):  
Junais ◽  
S. Boissier ◽  
B. Epinat ◽  
P. Amram ◽  
B. F. Madore ◽  
...  

Context. Malin 1 is the largest known low surface brightness (LSB) galaxy, the archetype of so-called giant LSB galaxies. The structure and origin of such galaxies are still poorly understood, especially because of the lack of high-resolution kinematics and spectroscopic data. Aims. We use emission lines from spectroscopic observations of Malin 1 aiming to bring new constraints on the internal dynamics and star formation history of Malin 1. Methods. We extracted a total of 16 spectra from different regions of Malin 1 and calculated the rotational velocities of these regions from the wavelength shifts and star formation rates from the observed Hα emission line fluxes. We compared our data with existing data and models for Malin 1. Results. For the first time we present the inner rotation curve of Malin 1, characterised in the radial range r < 10 kpc by a steep rise in the rotational velocity up to at least ∼350 km s−1 (with a large dispersion), which had not been observed previously. We used these data to study a suite of new mass models for Malin 1. We show that in the inner regions dynamics may be dominated by the stars (although none of our models can explain the highest velocities measured) but that at large radii a massive dark matter halo remains necessary. The Hα fluxes derived star formation rates are consistent with an early-type disc for the inner region and with the level found in extended UV galaxies for the outer parts of the giant disc of Malin 1. We also find signs of high metallicity but low dust content for the inner regions.

2020 ◽  
Vol 493 (1) ◽  
pp. 55-69 ◽  
Author(s):  
J E Young ◽  
Rachel Kuzio de Naray ◽  
Sharon X Wang

ABSTRACT We present the star-formation history of the low surface brightness (LSB) galaxy UGC 628 as part of the MUSCEL program (MUltiwavelength observations of the Structure, Chemistry, and Evolution of LSB galaxies). The star-formation histories of LSB galaxies represent a significant gap in our knowledge of galaxy assembly, with implications for dark matter / baryon feedback, IGM gas accretion, and the physics of star formation in low metallicity environments. Our program uses ground-based IFU spectra in tandem with space-based UV and IR imaging to determine the star-formation histories of LSB galaxies in a spatially resolved fashion. In this work we present the fitted history of our first target to demonstrate our techniques and methodology. Our technique splits the history of this galaxy into 15 semilogarithmically spaced time-steps. Within each time-step the star-formation rate of each spaxel is assumed constant. We then determine the set of 15 star-formation rates that best recreate the spectra and photometry measured in each spaxel. Our main findings with respect to UGC 628 are: (i) the visible properties of UGC 628 have varied over time, appearing as a high surface brightness spiral earlier than 8 Gyr ago and a starburst galaxy during a recent episode of star formation several tens of Myr ago, (ii) the central bar/core region was established early, around 8–10 Gyr ago, but has been largely inactive since, and (iii) star formation in the past 3 Gyr is best characterized as patchy and sporadic.


2006 ◽  
Vol 2 (S235) ◽  
pp. 327-327
Author(s):  
P. Papaderos

The star-formation history and chemodynamical evolution of Blue Compact Dwarf (BCD) galaxies are central issues in dwarf galaxy research. In spite of being old in their vast majority, BCDs resemble in many aspects unevolved low-mass galaxies in the early universe. They are gas-rich (Hi mass fraction of typically > 30%) and metal-deficient (7.1 $\la$ 12+log(O/H) $\la$ 8.3) extragalactic systems, undergoing intense star-forming (SF) activity within an underlying low-surface brightness (LSB) host galaxy.


1995 ◽  
Vol 164 ◽  
pp. 425-425
Author(s):  
Annette Ferguson ◽  
Rosemary Wyse ◽  
Jay Gallagher ◽  
Deidre Hunter

As part of a large project to study the rate, distribution and history of star formation in the outer parts of galactic disks (Ferguson, PhD thesis), we have obtained very deep Hα and B-band images of the nearby face-on spiral NGC1058. Our images reveal extremely low surface brightness outer spiral arms in the B-band which extend well beyond the Holmberg radius and appear to be aligned with underlying HI spiral arms. These features contrast greatly to the flocculent appearance of the innermost regions of the disk and the complete absence of any well defined-arms in the Hα image. The surface brightness profile derived from the B-band image exhibits a sharp fall off in the inner regions of the disk followed by a much shallower decline beyond ~ R25 and consequently a single exponential disk cannot be fit to the entire profile.


1999 ◽  
Vol 118 (5) ◽  
pp. 2245-2261 ◽  
Author(s):  
Carme Gallart ◽  
Wendy L. Freedman ◽  
Antonio Aparicio ◽  
Giampaolo Bertelli ◽  
Cesare Chiosi

2020 ◽  
Vol 501 (2) ◽  
pp. 1803-1822
Author(s):  
Seunghwan Lim ◽  
Douglas Scott ◽  
Arif Babul ◽  
David J Barnes ◽  
Scott T Kay ◽  
...  

ABSTRACT As progenitors of the most massive objects, protoclusters are key to tracing the evolution and star formation history of the Universe, and are responsible for ${\gtrsim }\, 20$ per cent of the cosmic star formation at $z\, {\gt }\, 2$. Using a combination of state-of-the-art hydrodynamical simulations and empirical models, we show that current galaxy formation models do not produce enough star formation in protoclusters to match observations. We find that the star formation rates (SFRs) predicted from the models are an order of magnitude lower than what is seen in observations, despite the relatively good agreement found for their mass-accretion histories, specifically that they lie on an evolutionary path to become Coma-like clusters at $z\, {\simeq }\, 0$. Using a well-studied protocluster core at $z\, {=}\, 4.3$ as a test case, we find that star formation efficiency of protocluster galaxies is higher than predicted by the models. We show that a large part of the discrepancy can be attributed to a dependence of SFR on the numerical resolution of the simulations, with a roughly factor of 3 drop in SFR when the spatial resolution decreases by a factor of 4. We also present predictions up to $z\, {\simeq }\, 7$. Compared to lower redshifts, we find that centrals (the most massive member galaxies) are more distinct from the other galaxies, while protocluster galaxies are less distinct from field galaxies. All these results suggest that, as a rare and extreme population at high z, protoclusters can help constrain galaxy formation models tuned to match the average population at $z\, {\simeq }\, 0$.


2019 ◽  
Vol 15 (S359) ◽  
pp. 386-390
Author(s):  
Lucimara P. Martins

AbstractWith the exception of some nearby galaxies, we cannot resolve stars individually. To recover the galaxies star formation history (SFH), the challenge is to extract information from their integrated spectrum. A widely used tool is the full spectral fitting technique. This consists of combining simple stellar populations (SSPs) of different ages and metallicities to match the integrated spectrum. This technique works well for optical spectra, for metallicities near solar and chemical histories not much different from our Galaxy. For everything else there is room for improvement. With telescopes being able to explore further and further away, and beyond the optical, the improvement of this type of tool is crucial. SSPs use as ingredients isochrones, an initial mass function, and a library of stellar spectra. My focus are the stellar libraries, key ingredient for SSPs. Here I talk about the latest developments of stellar libraries, how they influence the SSPs and how to improve them.


2017 ◽  
Vol 12 (S330) ◽  
pp. 148-151 ◽  
Author(s):  
Edouard J. Bernard

AbstractWe took advantage of the Gaia DR1 to combine TGAS parallaxes with Tycho-2 and APASS photometry to calculate the star formation history (SFH) of the solar neighbourhood within 250 pc using the colour-magnitude diagram fitting technique. We present the determination of the completeness within this volume, and compare the resulting SFH with that calculated from the Hipparcos catalogue within 80 pc of the Sun. We also show how this technique will be applied out to ~5 kpc thanks to the next Gaia data releases, which will allow us to quantify the SFH of the thin disc, thick disc and halo in situ, rather than extrapolating based on the stars from these components that are today in the solar neighbourhood.


Sign in / Sign up

Export Citation Format

Share Document