scholarly journals A recent starbust in the low surface brightness galaxy UGC 628

2020 ◽  
Vol 493 (1) ◽  
pp. 55-69 ◽  
Author(s):  
J E Young ◽  
Rachel Kuzio de Naray ◽  
Sharon X Wang

ABSTRACT We present the star-formation history of the low surface brightness (LSB) galaxy UGC 628 as part of the MUSCEL program (MUltiwavelength observations of the Structure, Chemistry, and Evolution of LSB galaxies). The star-formation histories of LSB galaxies represent a significant gap in our knowledge of galaxy assembly, with implications for dark matter / baryon feedback, IGM gas accretion, and the physics of star formation in low metallicity environments. Our program uses ground-based IFU spectra in tandem with space-based UV and IR imaging to determine the star-formation histories of LSB galaxies in a spatially resolved fashion. In this work we present the fitted history of our first target to demonstrate our techniques and methodology. Our technique splits the history of this galaxy into 15 semilogarithmically spaced time-steps. Within each time-step the star-formation rate of each spaxel is assumed constant. We then determine the set of 15 star-formation rates that best recreate the spectra and photometry measured in each spaxel. Our main findings with respect to UGC 628 are: (i) the visible properties of UGC 628 have varied over time, appearing as a high surface brightness spiral earlier than 8 Gyr ago and a starburst galaxy during a recent episode of star formation several tens of Myr ago, (ii) the central bar/core region was established early, around 8–10 Gyr ago, but has been largely inactive since, and (iii) star formation in the past 3 Gyr is best characterized as patchy and sporadic.

2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
James Schombert ◽  
Tamela Maciel ◽  
Stacy McGaugh

This paper presents optical and Hαimaging for a large sample of LSB galaxies selected from the PSS-II catalogs (Schombert et al., 1992). As noted in previous work, LSB galaxies span a range of luminosities () and sizes (), although they are consistent in their irregular morphology. Their Hαluminosities (L(Hα)) range from 1036to 1041 ergs s−1(corresponding to a range in star formation, using canonical prescriptions, from 10−5to 1  yr−1). Although their optical colors are at the extreme blue edge for galaxies, they are similar to the colors of dwarf galaxies (Van Zee, 2001) and gas-rich irregulars (Hunter and Elmegreen, 2006). However, their star formation rates per unit stellar mass are a factor of ten less than other galaxies of the same baryonic mass, indicating that they are not simply quiescent versions of more active star-forming galaxies. This paper presents the data, reduction techniques, and new philosophy of data storage and presentation. Later papers in this series will explore the stellar population and star formation history of LSB galaxies using this dataset.


Author(s):  
James Schombert ◽  
Stacy McGaugh

AbstractA series of population models are designed to explore the star formation history of gas-rich, low surface brightness (LSB) galaxies. LSB galaxies are unique in having properties of very blue colors, low Hα emission and high gas fractions that indicated a history of constant star formation (versus the declining star formation models used for most spirals and irregulars). The model simulations use an evolving multi-metallicity composite population that follows a chemical enrichment scheme based on Milky Way observations. Color and time sensitive stellar evolution components (i.e., BHB, TP-AGB and blue straggler stars) are included, and model colors are extended into theSpitzerwavelength regions for comparison to new observations. In general, LSB galaxies are well matched to the constant star formation scenario with the variation in color explained by a fourfold increase/decrease in star formation over the last 0.5 Gyrs (i.e., weak bursts). Early-type spirals, from the S4G sample, are better fit by a declining star formation model where star formation has decreased by 40% in the last 12 Gyrs.


Author(s):  
James M. Schombert ◽  
Stacy McGaugh

AbstractSurface photometry at 3.6 μm is presented for 61 low surface brightness (LSB) galaxies (μo<19 3.6 μm mag arcsecs−2). The sample covers a range of luminosity from −11 to −22 in M3.6 and size from 1 to 25 kpc. The morphologies in the mid-IR are comparable to those in the optical with 3.6 μm imaging reaches similar surface brightness depth as ground-based optical imaging. A majority of the resulting surface brightness profiles are single exponential in shape with very few displaying upward or downward breaks. The mean V − 3.6 colour of LSB is 2.3 with a standard deviation of 0.5. Colour-magnitude and two-colour diagrams are well matched to models of constant star formation, where the spread in colour is due to small changes in the star formation rate (SFR) over the last 0.5 Gyrs as also suggested by the specific SFR measured by Hα.


1996 ◽  
Vol 171 ◽  
pp. 356-356
Author(s):  
W.J.G. de Blok ◽  
J.M. Van Der Hulst ◽  
S.S. McGaugh

We have been working on multiband surface photometry, spectrophotometry and Hi synthesis data for 20 Low Surface Brightness (LSB) galaxies. LSB galaxies are well described by disks with an average central surface brightness of ∼ 23.4B-mag arcsec–2. They have scale lengths typical for high surface brightness (HSB) galaxies, though a large range of sizes is present. Their colours are blue, especially at the red side of the spectrum, where they are significantly bluer than HSB galaxies (de Blok et al. 1995a). Modelling and measurements of gas abundances (McGaugh 1994) suggests a low, stochastic star formation rate, and a lack of a large old population. The Hi surface densities are a factor of three lower than those in HSB galaxies (de Blok et al 1995b). However the difference is not as large as in the optical. The Hi disks are considerably larger, relative to the optical disks, than in HSB galaxies. The gas mass fraction is higher, indicating slow evolution. Star formation is inhibited by the low surface densities which are typically below the critical treshold as stipulated by Toomre's gravitational instability criterion. The rotation curves rise gradually, and are observed to flatten out only in a few cases. Often they still rise at the last measured point, or remain solid body through-out. Preliminary mass models suggest extended low density dark matter halos, with baryon dominated inner regions. The inferred evolution for LSB galaxies shows mass and density are fundamental parameters in determining a galaxy's evolutionary fate.


2020 ◽  
Vol 637 ◽  
pp. A21
Author(s):  
Junais ◽  
S. Boissier ◽  
B. Epinat ◽  
P. Amram ◽  
B. F. Madore ◽  
...  

Context. Malin 1 is the largest known low surface brightness (LSB) galaxy, the archetype of so-called giant LSB galaxies. The structure and origin of such galaxies are still poorly understood, especially because of the lack of high-resolution kinematics and spectroscopic data. Aims. We use emission lines from spectroscopic observations of Malin 1 aiming to bring new constraints on the internal dynamics and star formation history of Malin 1. Methods. We extracted a total of 16 spectra from different regions of Malin 1 and calculated the rotational velocities of these regions from the wavelength shifts and star formation rates from the observed Hα emission line fluxes. We compared our data with existing data and models for Malin 1. Results. For the first time we present the inner rotation curve of Malin 1, characterised in the radial range r < 10 kpc by a steep rise in the rotational velocity up to at least ∼350 km s−1 (with a large dispersion), which had not been observed previously. We used these data to study a suite of new mass models for Malin 1. We show that in the inner regions dynamics may be dominated by the stars (although none of our models can explain the highest velocities measured) but that at large radii a massive dark matter halo remains necessary. The Hα fluxes derived star formation rates are consistent with an early-type disc for the inner region and with the level found in extended UV galaxies for the outer parts of the giant disc of Malin 1. We also find signs of high metallicity but low dust content for the inner regions.


1999 ◽  
Vol 171 ◽  
pp. 253-260 ◽  
Author(s):  
John J. Salzer ◽  
Stuart A. Norton

AbstractWe analyze deep CCD images of nearby Blue Compact Dwarf (BCD) galaxies in an attempt to understand the nature of the progenitors which are hosting the current burst of star formation. In particular, we ask whether BCDs are hosted by normal or low-surface-brightness dI galaxies. We conclude that BCDs are in fact hosted by gas-rich galaxies which populate the extreme high-central-mass-density end of the dwarf galaxy distribution. Such galaxies are predisposed to having numerous strong bursts of star formation in their central regions. In this picture, BCDs can only occur in the minority of dwarf galaxies, rather than being a common phase experienced by all gas-rich dwarfs.


2008 ◽  
Vol 4 (S256) ◽  
pp. 281-286
Author(s):  
Carme Gallart ◽  
Ingrid Meschin ◽  
Antonio Aparicio ◽  
Peter B. Stetson ◽  
Sebastián L. Hidalgo

AbstractBased on the quantitative analysis of a set of wide-field color—magnitude diagrams reaching the old main sequence-turnoffs, we present new LMC star-formation histories, and their variation with galactocentric distance. Some coherent features are found, together with systematic variations of the star-formation history among the three fields analyzed. We find two main episodes of star formation in all three fields, from 1 to 4 and 7 to 13 Gyr ago, with relatively low star formation around ≃ 4–7 Gyr ago. The youngest age in each field gradually increases with galactocentric radius; in the innermost field, LMC 0514–6503, an additional star formation event younger than 1 Gyr is detected, with star formation declining, however, in the last ≃ 200 Myr. The population is found to be older on average toward the outer part of the galaxy, although star formation in all fields seems to have started around 13 Gyr ago.


2011 ◽  
Vol 7 (S284) ◽  
pp. 138-140
Author(s):  
Philip Günster ◽  
Dominik J. Bomans

AbstractUGC 12281 has been classified as having a pure disk and being a low surface brightness galaxy (LSBG), thus being an obvious member of the so-called superthin galaxies. At the same time it represents an extremely untypical type of LSBG due to its remarkable amount of current star formation and evidence for extraplanar ionized gas. This makes it become a perfect tool to investigate the triggering of star formation in LSB galaxies, located in an alleged isolated area. By means of deep photometry and long-slit spectroscopy we analyse the Hα halo and verify the existence of a potential dwarf companion which we found on processed SDSS images.


Sign in / Sign up

Export Citation Format

Share Document