scholarly journals Formation of a tiny flux rope in the center of an active region driven by magnetic flux emergence, convergence, and cancellation

2020 ◽  
Vol 642 ◽  
pp. A199
Author(s):  
Ruisheng Zheng ◽  
Yao Chen ◽  
Bing Wang ◽  
Hongqiang Song ◽  
Wenda Cao

Aims. Flux ropes are generally believed to be core structures of solar eruptions that are significant for the space weather, but their formation mechanism remains intensely debated. We report on the formation of a tiny flux rope beneath clusters of active region loops on 2018 August 24. Methods. Combining the high-quality multiwavelength observations from multiple instruments, we studied the event in detail in the photosphere, chromosphere, and corona. Results. In the source region, the continual emergence of two positive polarities (P1 and P2) that appeared as two pores (A and B) is unambiguous. Interestingly, P2 and Pore B slowly approached P1 and Pore A, implying a magnetic flux convergence. During the emergence and convergence, P1 and P2 successively interacted with a minor negative polarity (N3) that emerged, which led to a continuous magnetic flux cancellation. As a result, the overlying loops became much sheared and finally evolved into a tiny twisted flux rope that was evidenced by a transient inverse S-shaped sigmoid, the twisted filament threads with blueshift and redshift signatures, and a hot channel. Conclusions. All the results show that the formation of the tiny flux rope in the center of the active region was closely associated with the continuous magnetic flux emergence, convergence, and cancellation in the photosphere. Hence, we suggest that the magnetic flux emergence, convergence, and cancellation are crucial for the formation of the tiny flux rope.

2019 ◽  
Vol 623 ◽  
pp. A176 ◽  
Author(s):  
L. P. Chitta ◽  
A. R. C. Sukarmadji ◽  
L. Rouppe van der Voort ◽  
H. Peter

Context. Densely packed coronal loops are rooted in photospheric plages in the vicinity of active regions on the Sun. The photospheric magnetic features underlying these plage areas are patches of mostly unidirectional magnetic field extending several arcsec on the solar surface. Aims. We aim to explore the transient nature of the magnetic field, its mixed-polarity characteristics, and the associated energetics in the active region plage using high spatial resolution observations and numerical simulations. Methods. We used photospheric Fe I 6173 Å spectropolarimetric observations of a decaying active region obtained from the Swedish 1-m Solar Telescope (SST). These data were inverted to retrieve the photospheric magnetic field underlying the plage as identified in the extreme-ultraviolet emission maps obtained from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To obtain better insight into the evolution of extended unidirectional magnetic field patches on the Sun, we performed 3D radiation magnetohydrodynamic simulations of magnetoconvection using the MURaM code. Results. The observations show transient magnetic flux emergence and cancellation events within the extended predominantly unipolar patch on timescales of a few 100 s and on spatial scales comparable to granules. These transient events occur at the footpoints of active region plage loops. In one case the coronal response at the footpoints of these loops is clearly associated with the underlying transient. The numerical simulations also reveal similar magnetic flux emergence and cancellation events that extend to even smaller spatial and temporal scales. Individual simulated transient events transfer an energy flux in excess of 1 MW m−2 through the photosphere. Conclusions. We suggest that the magnetic transients could play an important role in the energetics of active region plage. Both in observations and simulations, the opposite-polarity magnetic field brought up by transient flux emergence cancels with the surrounding plage field. Magnetic reconnection associated with such transient events likely conduits magnetic energy to power the overlying chromosphere and coronal loops.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chaowei Jiang ◽  
Jun Chen ◽  
Aiying Duan ◽  
Xinkai Bian ◽  
Xinyi Wang ◽  
...  

Magnetic flux ropes (MFRs) constitute the core structure of coronal mass ejections (CMEs), but hot debates remain on whether the MFR forms before or during solar eruptions. Furthermore, how flare reconnection shapes the erupting MFR is still elusive in three dimensions. Here we studied a new MHD simulation of CME initiation by tether-cutting magnetic reconnection in a single magnetic arcade. The simulation follows the whole life, including the birth and subsequent evolution, of an MFR during eruption. In the early phase, the MFR is partially separated from its ambient field by a magnetic quasi-separatrix layer (QSL) that has a double-J shaped footprint on the bottom surface. With the ongoing of the reconnection, the arms of the two J-shaped footprints continually separate from each other, and the hooks of the J shaped footprints expand and eventually become closed almost at the eruption peak time, and thereafter the MFR is fully separated from the un-reconnected field by the QSL. We further studied the evolution of the toroidal flux in the MFR and compared it with that of the reconnected flux. Our simulation reproduced an evolution pattern of increase-to-decrease of the toroidal flux, which is reported recently in observations of variations in flare ribbons and transient coronal dimming. The increase of toroidal flux is owing to the flare reconnection in the early phase that transforms the sheared arcade to twisted field lines, while its decrease is a result of reconnection between field lines in the interior of the MFR in the later phase.


2021 ◽  
Vol 906 (1) ◽  
pp. 45
Author(s):  
Aiying Duan ◽  
Chaowei Jiang ◽  
Peng Zou ◽  
Xueshang Feng ◽  
Jun Cui

2014 ◽  
Vol 564 ◽  
pp. A12 ◽  
Author(s):  
F. Chen ◽  
H. Peter ◽  
S. Bingert ◽  
M. C. M. Cheung

2008 ◽  
Vol 26 (10) ◽  
pp. 3089-3101 ◽  
Author(s):  
B. Vršnak

Abstract. The most important observational characteristics of coronal mass ejections (CMEs) are summarized, emphasizing those aspects which are relevant for testing physical concepts employed to explain the CME take-off and propagation. In particular, the kinematics, scalings, and the CME-flare relationship are stressed. Special attention is paid to 3-dimensional (3-D) topology of the magnetic field structures, particularly to aspects related to the concept of semi-toroidal flux-rope anchored at both ends in the dense photosphere and embedded in the coronal magnetic arcade. Observations are compared with physical principles and concepts employed in explaining the CME phenomenon, and implications are discussed. A simple flux-rope model is used to explain various stages of the eruption. The model is able to reproduce all basic observational requirements: stable equilibrium and possible oscillations around equilibrium, metastable state and possible destabilization by an external disturbance, pre-eruptive gradual-rise until loss of equilibrium, possibility of fallback events and failed eruptions, relationship between impulsiveness of the CME acceleration and the source-region size, etc. However, it is shown that the purely ideal MHD process cannot account for highest observed accelerations which can attain values up to 10 km s−2. Such accelerations can be achieved if the process of reconnection beneath the erupting flux-rope is included into the model. Essentially, the role of reconnection is in changing the magnetic flux associated with the flux-rope current and supplying "fresh" poloidal magnetic flux to the rope. These effects help sustain the electric current flowing along the flux-rope, and consequently, reinforce and prolong the CME acceleration. The model straightforwardly explains the observed synchronization of the flare impulsive phase and the CME main-acceleration stage, as well as the correlations between various CME and flare parameters.


2020 ◽  
Vol 639 ◽  
pp. A44
Author(s):  
Soumitra Hazra ◽  
Gopal Sardar ◽  
Partha Chowdhury

Context. Large-scale solar eruptions significantly affect space weather and damage space-based human infrastructures. It is necessary to predict large-scale solar eruptions; it will enable us to protect the vulnerable infrastructures of our modern society. Aims. We investigate the difference between flaring and nonflaring active regions. We also investigate whether it is possible to forecast a solar flare. Methods. We used photospheric vector magnetogram data from the Solar Dynamic Observatory’s Helioseismic Magnetic Imager to study the time evolution of photospheric magnetic parameters on the solar surface. We built a database of flaring and nonflaring active regions observed on the solar surface from 2010 to 2017. We trained a machine-learning algorithm with the time evolution of these active region parameters. Finally, we estimated the performance obtained from the machine-learning algorithm. Results. The strength of some magnetic parameters such as the total unsigned magnetic flux, the total unsigned magnetic helicity, the total unsigned vertical current, and the total photospheric magnetic energy density in flaring active regions are much higher than those of the non-flaring regions. These magnetic parameters in a flaring active region evolve fast and are complex. We are able to obtain a good forecasting capability with a relatively high value of true skill statistic. We also find that time evolution of the total unsigned magnetic helicity and the total unsigned magnetic flux provides a very high ability of distinguishing flaring and nonflaring active regions. Conclusions. We can distinguish a flaring active region from a nonflaring region with good accuracy. We confirm that there is no single common parameter that can distinguish all flaring active regions from the nonflaring regions. However, the time evolution of the top two magnetic parameters, the total unsigned magnetic flux and the total unsigned magnetic helicity, have a very high distinguishing capability.


2021 ◽  
Vol 7 (1) ◽  
pp. 3-12
Author(s):  
Anastasiia Kudriavtseva ◽  
Ivan Myshyakov ◽  
Arkadiy Uralov ◽  
Victor Grechnev

We analyze the presence of a microwave neutral-line-associated source (NLS) in a super-active region NOAA 12673, which produced a number of geo-effective events in September 2017. To estimate the NLS position, we use data from the Siberian Radioheliograph in a range 4–8 GHz and from the Nobeyama Radioheliograph at 17 GHz. Calculation of the coronal magnetic field in a non-linear force-free approximation has revealed an extended structure consisting of interconnected magnetic flux ropes, located practically along the entire length of the main polarity separation line of the photospheric magnetic field. NLS is projected into the region of the strongest horizontal magnetic field, where the main energy of this structure is concentrated. During each X-class flare, the active region lost magnetic helicity and became a CME source.


Author(s):  
V. Archontis ◽  
P. Syntelis

A plethora of solar dynamic events, such as the formation of active regions, the emission of jets and the occurrence of eruptions is often associated with the emergence of magnetic flux from the interior of the Sun to the surface and above. Here, we present a short review on the onset, driving and/or triggering of such events by magnetic flux emergence. We briefly describe some key observational examples, theoretical aspects and numerical simulations, towards revealing the mechanisms that govern solar dynamics and activity related to flux emergence. We show that the combination of important physical processes like shearing and reconnection of magnetic fieldlines in emerging flux regions or at their vicinity can power some of the most dynamic phenomena in the Sun on various temporal and spatial scales. Based on previous and recent observational and numerical studies, we highlight that, in most cases, none of these processes alone can drive and also trigger explosive phenomena releasing considerable amount of energy towards the outer solar atmosphere and space, such as flares, jets and large-scale eruptions (e.g. coronal mass ejections). In addition, one has to take into account the physical properties of the emerging field (e.g. strength, amount of flux, relative orientation to neighbouring and pre-existing magnetic fields, etc.) in order to better understand the exact role of magnetic flux emergence on the onset of solar dynamic events. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


2021 ◽  
Author(s):  
Volker Bothmer

<div> <p><span>Magnetic clouds are transient solar wind flows in the interplanetary medium with smooth rotations of the magnetic field vector and low plasma beta values. The analysis of magnetic clouds identified in the data of the two Helios spacecraft between 0.3 and 1 AU showed that they can be interpreted to first order by force-free, large-scale, cylindrical magnetic flux tubes. A close correlation of their occurrences was found with disappearing filaments at the Sun. The magnetic clouds that originated from the northern solar hemisphere showed predominantly left-handed magnetic helicities and the ones from the southern hemisphere predominantly right-handed ones. They were often preceded by an interplanetary shock wave and some were found to be directly following a coronal mass ejection towards the Helios spacecraft as detected by the Solwind coronagraph on board the P78-1 satellite. With the SOHO mission unprecedented long-term observations of coronal mass ejections (CMEs) were taken with the LASCO coronagraphs, with a spatial and time resolution that allowed to investigate their internal white-light fine structure. With complementary photospheric and EUV observations from SOHO, CMEs were found to arise from pre-existing small scale loop systems, overlying regions of opposite magnetic polarities. From the characteristic pattern of their source regions in both solar hemispheres, a generic scheme was presented in which their projected white-light topology depends primarily on the orientation and position of the source region’s neutral line on the solar disk. Based on this interpretation the graduated cylindrical shell method was developed, which allowed to model the electron density distribution of CMEs as 3D flux ropes. This concept was validated through stereoscopic observations of CMEs taken by the coronagraphs of the SECCHI remote sensing suite on board the twin STEREO spacecraft. The observations further revealed that the dynamic near-Sun evolution of CMEs often leads to distortions of their flux rope structure. However, the magnetic flux rope concept of CMEs is today one of the fundamental methods in space weather forecasts. With the Parker Solar Probe we currently observe for the first time CMEs in-situ and remotely at their birthplaces in the solar corona and can further unravel their origin and evolution from the corona into the heliosphere. This lecture provides a state-of-the-art overview on the magnetic structure of CMEs and includes latest observations from the Parker Solar Probe mission.</span></p> </div>


Sign in / Sign up

Export Citation Format

Share Document