scholarly journals Modeling disk fragmentation and multiplicity in massive star formation

2020 ◽  
Vol 644 ◽  
pp. A41 ◽  
Author(s):  
G. André Oliva ◽  
R. Kuiper

Context. There is growing evidence that massive stars grow by disk accretion in a similar way to their low-mass counterparts. Early in evolution, these disks can achieve masses that are comparable to the current stellar mass, and therefore the forming disks are highly susceptible to gravitational fragmentation. Aims. We investigate the formation and early evolution of an accretion disk around a forming massive protostar, focussing on its fragmentation physics. To this end, we follow the collapse of a molecular cloud of gas and dust, the formation of a massive protostar, the formation of its circumstellar disk, and the formation and evolution of the disk fragments. Methods. We used a grid-based, self-gravity radiation hydrodynamics code including a sub-grid module for stellar evolution and dust evolution. We purposely do not use a sub-grid module for fragmentation such as sink particles to allow for all paths of fragment formation and destruction, but instead we keep the spatial grid resolution high enough to properly resolve the physical length scales of the problem, namely the pressure scale height and Jeans length of the disk. Simulations are performed on a grid in spherical coordinates with a logarithmic spacing of the grid cells in the radial direction and a cosine distribution of the grid cells in the polar direction, focusing the spatial resolution on the disk midplane. As a consequence, roughly 25% of the total number of grid cells, corresponding to ~26 million grid cells, are used to model the disk physics. These constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. For a better understanding of the effects of spatial resolution and to compare our high-resolution results with previous lower resolution studies in the literature, we perform the same simulation at five different resolutions, each run differing in resolution from its predecessor by a factor of two. Results. The cloud collapses and a massive (proto)star is formed in its center surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of ~1 M⊙, and their continuous interactions with the disk, spiral arms, and other fragments result in eccentric orbits. Fragments form hydrostatic cores surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction, and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores, and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find approximately six companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.

2018 ◽  
Vol 620 ◽  
pp. A182 ◽  
Author(s):  
A. Kölligan ◽  
R. Kuiper

Context. Massive stars live short but intense lives. While less numerous than low-mass stars, they enormously impact their surroundings by several feedback mechanisms. They form in opaque and far-away regions of the galaxy, such that one of these feedback mechanisms also becomes a record of their evolution: their bright large-scale jets and outflows. Aims. In a comprehensive convergence study, we investigate the computational conditions necessary to resolve (pseudo-) disk formation and jet-launching processes, and analyze possible caveats. We explore the magneto-hydrodynamic (MHD) processes of the collapse of massive prestellar cores in detail, including an analysis of the forces involved and their temporal evolution for up to two free-fall times. Methods. We conduct MHD simulations using the state-of-the-art code PLUTO, combining nonideal MHD, self-gravity, and very high resolutions as they have never been achieved before. Our setup includes a 100 M⊙ cloud core that collapses under its own self-gravity to self-consistently form a dense disk structure and launch tightly collimated magneto-centrifugal jets and wide-angle tower flows. Results. We show a comprehensive evolutionary picture of the collapse of a massive prestellar core with a detailed analysis of the physical processes involved and our high-resolution simulations can resolve a magneto-centrifugal jet and a magnetic pressure-driven outflow, separately. The nature of the outflows depends critically on spatial resolution. Only high-resolution simulations are able to differentiate a magneto-centrifugally launched, highly collimated jet from a slow wide-angle magnetic-pressure-driven tower flow. Of these two outflow components, the tower flow dominates angular-momentum transport. The mass outflow rate is dominated by the entrained material from the interaction of the jet with the stellar environment and only part of the ejected medium is directly launched from the accretion disk. A tower flow can only develop to its full extent when much of the original envelope has already dispersed. Taking into account both the mass launched from the surface of the disk and the entrained material from the envelope, we find an ejection-to-accretion efficiency of 10%. Nonideal MHD is required to form centrifugally supported accretion disks and the disk size is strongly dependent on spatial resolution. A converged result for disk and both outflow components requires a spatial resolution of Δx ≤ 0.17 au at 1 au and sink-cell sizes ≤3.1 au. Conclusions. Massive stars not only possess slow wide-angle tower flows, but also produce magneto-centrifugal jets, just as their low-mass counterparts. The actual difference between low-mass and high-mass star formation lies in the “embeddedness” of the high-mass star which implies that the jet and tower flow interact with the infalling large-scale stellar environment, potentially resulting in entrainment.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Vojtěch Šimon

Abstract 4U 1608–52 is a soft X-ray transient. The analysis presented here of a particular part of its X-ray activity uses observations of RXTE/ASM and Swift/BAT. We show a time segment (MJD 54262–MJD 55090) (828 d) in which 4U 1608–52 behaved as a quasi-persistent X-ray source with a series of bumps, with a complicated relation between the evolution of fluxes in the soft (1.5–12 keV) and the hard (15–50 keV) X-ray regions. We ascribe these bumps to a series of propagations of heating and cooling fronts over the inner disk region without any transitions to the true quiescence. 4U 1608–52 oscillated around the boundary between the dominance of the Comptonized component and the dominance of the multicolor accretion disk in its luminosity. Only some of the bumps in this series were accompanied by a transition from the hard to the soft state; if it occurred, it displayed a strong hysteresis effect. The hard-band emission with the dominant Comptonized component was present for most of this active state and showed a cycle of about 40 d. We argue that the cyclic variations of flux come from the inner disk region, not, e.g., from a jet. We also discuss the observed behavior of 4U 1608–52 in the context of other quasi-persistent low-mass X-ray binaries.


2002 ◽  
Vol 12 ◽  
pp. 143-145 ◽  
Author(s):  
Lee G. Mundy ◽  
Friedrich Wyrowski ◽  
Sarah Watt

Millimeter and submillimeter wavelength images of massive star-forming regions are uncovering the natal material distribution and revealing the complexities of their circumstellar environments on size scales from parsecs to 100’s of AU. Progress in these areas has been slower than for low-mass stars because massive stars are more distant, and because they are gregarious siblings with different evolutionary stages that can co-exist even within a core. Nevertheless, observational goals for the near future include the characterization of an early evolutionary sequence for massive stars, determination if the accretion process and formation sequence for massive stars is similar to that of low-mass stars, and understanding of the role of triggering events in massive star formation.


2021 ◽  
Vol 914 (1) ◽  
pp. L24
Author(s):  
Shanghuo Li ◽  
Xing Lu ◽  
Qizhou Zhang ◽  
Chang-Won Lee ◽  
Patricio Sanhueza ◽  
...  
Keyword(s):  

2014 ◽  
Vol 23 (06) ◽  
pp. 1450053 ◽  
Author(s):  
Joan Jing Wang ◽  
Hsiang-Kuang Chang

In accreting neutron star (NS) low-mass X-ray binary (LMXB) systems, NS accretes material from its low-mass companion via a Keplerian disk. In a viscous accretion disk, inflows orbit the NS and spiral in due to dissipative processes, such as the viscous process and collisions of elements. The dynamics of accretion flows in the inner region of an accretion disk is significantly affected by the rotation of NS. The rotation makes NS, thus the spacetime metric, deviate from the originally spherical symmetry, and leads to gravitational quadrupole, on one hand. On the other hand, a rotating NS drags the local inertial frame in its vicinity, which is known as the rotational frame-dragging effect. In this paper, we investigate the orbital motion of accretion flows of accreting NS/LMXBs and demonstrate that the rotational effects of NS result in a band of quasi-quantized structure in the inner region of the accretion disk, which is different, in nature, from the scenario in the strong gravity of black hole arising from the resonance for frequencies related to epicyclic and orbital motions. We also demonstrate that such a disk structure may account for frequencies seen in X-ray variability, such as quasi-periodic oscillations (QPOs), and can be a potential promising tool for the investigation of photon polarization.


1987 ◽  
Vol 125 ◽  
pp. 199-199
Author(s):  
J. Shaham ◽  
M. Tavani

Spectral observations of low-mass X-ray binaries (LMXBs) show that the soft component usually dominates over the hard one. These results provide additional support to an interpretation based on models of LMXBs in which the neutron star while, on the average, spinning up, is also experiencing a spinning down torque. Under these conditions, a fraction of the luminosity associated with the gravitational release of energy on the surface of the accreting neutron star may manifest itself as luminosity originating in the inner part of the accretion disk. It is probably possible to separate the two contributions; the stellar luminosity can be associated with the hard component of the spectrum and the disk luminosity, related to the exchange of energy due to the torque between the rapidly spinning neutron star and the accretion disk, can be associated with the soft spectral component.


2011 ◽  
Vol 1 (1) ◽  
pp. 4 ◽  
Author(s):  
Felix F. Brezinski ◽  
Ahmad A. Hujeirat

A general relativistic model for the formation and acceleration of low mass-loaded jets from systems containing accreting black holes is presented. The model is based on previous numerical results and theoretical studies in the Newtonian regime, but modified to include the effects of space-time curvature in the vicinity of the event horizon of a spinning black hole. It is argued that the boundary layer between the Keplerian accretion disk and the event horizon is best suited for the formation and acceleration of the accretion-powered jets in active galactic nuclei and micro-quasars. The model presented here is based on matching the solutions of three different regions: i- a weakly magnetized Keplerian accretion disk in the outer part, where the transport of angular momentum is mediated through the magentorotational instability, ii- a strongly magnetized, advection-dominated and turbulent-free boundary layer (BL) between the outer cold accretion disk and the event horizon and where the plasma rotates sub-Keplerian and iii- a transition zone (TZ) between the BL and the overlying corona, where the electrons and protons are thermally uncoupled, highly dissipative and rotate super-Keplerian. In the BL, the gravitation-driven dynamical collapse of the plasma increases the strength of the poloidal magnetic field (PMF) significantly, subsequently suppressing the generation and dissipation of turbulence and turning off the primary source of heating. In this case, the BL appears much fainter than standard disk models so as if the disk truncates at a certain radius. The action of the PMF in the BL is to initiate torsional Alf`ven waves that transport angular momentum from the embedded plasma vertically into the TZ, where a significant fraction of the shear-generated toroidal magnetic field reconnects, thereby heating the protons up to the virial-temperature. Also, the strong PMF forces the electrons to cool rapidly, giving rise therefore to the formation of a gravitationally unbound two-temperature proton-dominated outflow. Our model predicts the known correlation between the Lorentz-factor and the spin parameter of the BH. It also shows that the effective surface of the BL, through which the baryons flow into the TZ, shrinks with increasing the spin parameter, implying therefore that low mass-loaded jets most likely originate from around Kerr black holes. When applying our model to the jet in the elliptical galaxy M87, we find a spin parameter <em>a ∈</em> [0.99, 0.998], a transition radius rtr ≈ 30 gravitational radii and a fraction of 0.05 − 0.1 of the mass accretion rate goes into the TZ, where the plasma speeds up its outward-oriented motion to reach a Lorentz factor Γ <em>∈</em> [2.5, 5.0] at rtr.


1994 ◽  
Vol 159 ◽  
pp. 484-484
Author(s):  
Yuan-Kuen Ko ◽  
Timothy R. Kallman

We investigate the structure of an X-ray heated accretion disk in active galactic nuclei. It is found that X-ray heating can prevent the disk to be disrupted by its self-gravity under sufficient X-ray heating. The disk size can be two orders of magnitute larger than that limited by self-gravity of the disk without X-ray heating. An accretion disk corona will be formed by X-ray heating and can be a site for line emission. We present such emission line spectra which range from optical to hard X-ray energies and compare with the observational data.


Sign in / Sign up

Export Citation Format

Share Document