scholarly journals Inner crust of a neutron star at the point of crystallization in a multicomponent approach

2020 ◽  
Vol 640 ◽  
pp. A77 ◽  
Author(s):  
T. Carreau ◽  
A. F. Fantina ◽  
F. Gulminelli

Context. The possible presence of amorphous and heterogeneous phases in the inner crust of a neutron star is expected to reduce the electrical conductivity of the crust, potentially with significant consequences on the magneto-thermal evolution of the star. In cooling simulations, the disorder is quantified by an impurity parameter, which is often taken as a free parameter. Aims. We aim to give a quantitative prediction of the impurity parameter as a function of the density in the crust, performing microscopic calculations including up-to-date microphysics of the crust. Methods. A multicomponent approach was developed at a finite temperature using a compressible liquid-drop description of the ions with an improved energy functional based on recent microscopic nuclear models and optimized on extended Thomas-Fermi calculations. Thermodynamic consistency was ensured by adding a rearrangement term, and deviations from the linear mixing rule were included in the liquid phase. Results. The impurity parameter is consistently calculated at the crystallization temperature as determined in the one-component plasma approximation for the different functionals. Our calculations show that at the crystallization temperature, the composition of the inner crust is dominated by nuclei with charge number around Z ≈ 40, while the range of the Z distribution varies from about 20 near the neutron drip to about 40 closer to the crust-core transition. This reflects on the behavior of the impurity parameter that monotonically increases with density reaching up to around 40 in the deeper regions of the inner crust. Conclusions. Our study shows that the contribution of impurities is non-negligible, thus potentially having an impact on the transport properties in the neutron-star crust. The obtained values of the impurity parameter represent a lower limit; larger values are expected in the presence of nonspherical geometries and/or fast cooling dynamics.

2020 ◽  
Vol 635 ◽  
pp. A84 ◽  
Author(s):  
T. Carreau ◽  
F. Gulminelli ◽  
N. Chamel ◽  
A. F. Fantina ◽  
J. M. Pearson

Context. In the cooling process of a non-accreting neutron star, the composition and properties of the crust are thought to be fixed at the finite temperature where nuclear reactions fall out of equilibrium. A lower estimate for this temperature is given by the crystallization temperature, which can be as high as ≈7 × 109 K in the inner crust, potentially leading to sizeable differences with respect to the simplifying cold-catalyzed matter hypothesis. Aims. We extend a recent work on the outer crust to the study of the crystallization of the inner crust and the associated composition in the one-component plasma approximation. Methods. The finite temperature variational equations for non-uniform matter in both the liquid and the solid phases are solved using a compressible liquid-drop approach with parameters optimized on four different microscopic models that cover current uncertainties in nuclear modeling. Results. We consider the effect of the different nuclear ingredients with their associated uncertainties separately: the nuclear equation of state, the surface properties in the presence of a uniform gas of dripped neutrons, and the proton shell effects arising from the ion single-particle structure. Our results suggest that the highest source of model dependence comes from the smooth part of the nuclear functional. Conclusions. We show that shell effects play an important role at the lowest densities close to the outer crust, but the most important physical ingredient to be settled for a quantitative prediction of the inner crust properties is the surface tension at extreme isospin values.


2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


Author(s):  
Akira Dohi ◽  
Ken’ichiro Nakazato ◽  
Masa-aki Hashimoto ◽  
Matsuo Yasuhide ◽  
Tsuneo Noda

Abstract Whether fast cooling processes occur or not is crucial for the thermal evolution of neutron stars. In particular, the threshold of the direct Urca process, which is one of the fast cooling processes, is determined by the interior proton fraction $Y_p$, or the nuclear symmetry energy. Since recent observations indicate the small radius of neutron stars, a low value is preferred for the symmetry energy. In this study, simulations of neutron star cooling are performed adopting three models for the equation of state (EoS): Togashi, Shen, and LS220 EoSs. The Togashi EoS has been recently constructed with realistic nuclear potentials under finite temperature, and found to account for the small radius of neutron stars. As a result, we find that, since the direct Urca process is forbidden, the neutron star cooling is slow with use of the Togashi EoS. This is because the symmetry energy of Togashi EoS is lower than those of other EoSs. Hence, in order to account for observed age and surface temperature of isolated neutron stars with the use of the Togashi EoS, other fast cooling processes are needed regardless of the surface composition.


2020 ◽  
Vol 633 ◽  
pp. A149 ◽  
Author(s):  
A. F. Fantina ◽  
S. De Ridder ◽  
N. Chamel ◽  
F. Gulminelli

Context. The interior of a neutron star is usually assumed to be made of cold catalyzed matter. However, the outer layers are unlikely to remain in full thermodynamic equilibrium during the formation of the star and its subsequent cooling, especially after crystallization occurs. Aims. We study the cooling and the equilibrium composition of the outer layers of a non-accreting neutron star down to crystallization. Here the impurity parameter, generally taken as a free parameter in cooling simulations, is calculated self-consistently using a microscopic nuclear model for which a unified equation of state has recently been determined. Methods. We follow the evolution of the nuclear distributions of the multi-component Coulomb liquid plasma fully self-consistently, adapting a general formalism originally developed for the description of supernova cores. We calculate the impurity parameter at the crystallization temperature as determined in the one-component plasma approximation. Results. Our analysis shows that the sharp changes in composition obtained in the one-component plasma approximation are smoothed out when a full nuclear distribution is allowed. The Coulomb coupling parameter at melting is found to be reasonably close to the canonical value of 175, except for specific values of the pressure for which supercooling occurs in the one-component plasma approximation. Our multi-component treatment leads to non-monotonic variations of the impurity parameter with pressure. Its values can change by several orders of magnitude reaching about 50, suggesting that the crust may be composed of an alternation of pure (highly conductive) and impure (highly resistive) layers. The results presented here complement the recent unified equation of state obtained within the same nuclear model. Conclusions. Our self-consistent approach to hot dense multi-component plasma shows that the presence of impurities in the outer crust of a neutron star is non-negligible and may have a sizeable impact on transport properties. In turn, this may have important implications not only for the cooling of neutron stars, but also for their magneto-rotational evolution.


2017 ◽  
Vol 57 (6-7) ◽  
pp. 238-251 ◽  
Author(s):  
Scott D. Baalrud ◽  
Jérôme Daligault

2004 ◽  
Vol 603 (1) ◽  
pp. L37-L40 ◽  
Author(s):  
Andrew Cumming ◽  
Jared Macbeth

1986 ◽  
Vol 93 (2) ◽  
pp. 443-448 ◽  
Author(s):  
R. V. Gopala Rao ◽  
Ratna Das

2021 ◽  
Vol 2103 (1) ◽  
pp. 012004
Author(s):  
N A Zemlyakov ◽  
A I Chugunov ◽  
N N Shchechilin

Abstract Neutron stars are superdense compact astrophysical objects. The central region of the neuron star (the core) consists of locally homogeneous nuclear matter, while in the outer region (the crust) nucleons are clustered. In the outer crust these nuclear clusters represent neutron-rich atomic nuclei and all nucleons are bound within them. Whereas in the inner crust some neutrons are unbound, but nuclear clusters still keeps generally spherical shape. Here we consider the region between the crust and the core of the star, so-called mantle, where non-spherical nuclear clusters may exist. We apply compressible liquid drop model to calculate the energy density for several shape types of nuclear clusters. It allows us to identify the most energetically favorable configuration as function of baryon number density. Employing four Skyrme-type forces (SLy4 and BSk24, BSk25, BSk26), which are widely used in the neutron star physics, we faced with strong model dependence of the ground state composition. In particular, in agreement with previous works within liquid drop model, mantle is absent for SLy4 (nuclear spheres directly transit into homogeneous nuclear matter; exotic nuclear shapes do not appear).


2001 ◽  
Vol 63 (6) ◽  
Author(s):  
Leonid Burakovsky ◽  
Dean L. Preston
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document