scholarly journals The Gaia-ESO Survey: an extremely Li-rich giant in globular cluster NGC 1261

2020 ◽  
Vol 639 ◽  
pp. L2
Author(s):  
N. Sanna ◽  
E. Franciosini ◽  
E. Pancino ◽  
A. Mucciarelli ◽  
M. Tsantaki ◽  
...  

Lithium-rich stars in globular clusters are rare. Only 14 have been found so far, in different evolutionary phases from dwarfs to giants. Different mechanisms have been proposed to explain this enhancement, but it is still an open problem. Using spectra collected within the Gaia-ESO Survey, obtained with the GIRAFFE spectrograph at the ESO Very Large Telescope, we present the discovery of the first Li-rich star in the cluster NGC 1261, the second star known in the red giant branch bump phase. The star shows an extreme Li overabundance of A(Li)LTE = 3.92 ± 0.14, corresponding to A(Li)NLTE = 3.40 dex. We propose that the Li enhancement is caused by fresh Li production through an extra mixing process (sometimes referred to as cool bottom burning). Alternatively, it could be a pre-existing Li overabundance caused by mass-transfer from a red giant star; this mechanism does not enhance the barium abundance and thus we observe low barium. To unambiguously explain the Li enhancement in globular cluster stars, however, a reliable determination of the abundance of key species like Be, 6Li, 12C/13C, and several s-process elements is required, as well as detailed modelling of chromospheric activity indicators.

1980 ◽  
Vol 5 ◽  
pp. 817-826
Author(s):  
B. E. J. Pagel

SummaryThis review concerns recent work on the determination of overall metallicities [Fe/H] in a number of globular clusters and the systematics of mixing effects displayed (usually) by weak CH and strong CN. Special attention is given to the globular cluster ω Centauri, where both metal abundance variations and mixing effects occur and are closely intertwined. Recent observations carried out at the Anglo-Australian Telescope by E.A. Mallia and D.C. Watts have revealed large variations in the strength of metallic lines across the red giant branch of this cluster.


2018 ◽  
Vol 618 ◽  
pp. A134 ◽  
Author(s):  
A. Mucciarelli ◽  
M. Salaris ◽  
L. Monaco ◽  
P. Bonifacio ◽  
X. Fu ◽  
...  

We present Li, Na, Al, and Fe abundances of 199 lower red giant branch star members of the stellar system Omega Centauri, using high-resolution spectra acquired with FLAMES at the Very Large Telescope. The A(Li) distribution is peaked at A(Li) ∼ 1 dex with a prominent tail towards lower values. The peak of the distribution well agrees with the lithium abundances measured in lower red giant branch stars in globular clusters and Galactic field stars. Stars with A(Li) ∼ 1 dex are found at metallicities lower than [Fe/H] ∼ –1.3 dex but they disappear at higher metallicities. On the other hand, Li-poor stars are found at all metallicities. The most metal-poor stars exhibit a clear Li–Na anti-correlation, where about 30% of the sample have A(Li) lower than ∼0.8 dex, while these stars represent a small fraction of normal globular clusters. Most of the stars with [Fe/H] > –1.6 dex are Li poor and Na rich. The Li depletion measured in these stars is not observed in globular clusters with similar metallicities and we demonstrate that it is not caused by the proposed helium enhancements and/or young ages. Hence, these stars formed from a gas already depleted in lithium. Finally, we note that Omega Centauri includes all the populations (Li-normal/Na-normal, Li-normal/Na-rich, and Li-poor/Na-rich stars) observed, to a lesser extent, in mono-metallic GCs.


2020 ◽  
Vol 498 (3) ◽  
pp. 4472-4480
Author(s):  
S Saracino ◽  
S Kamann ◽  
C Usher ◽  
N Bastian ◽  
S Martocchia ◽  
...  

ABSTRACT Nearly all of the well-studied ancient globular clusters (GCs), in the Milky Way and in nearby galaxies, show star-to-star variations in specific elements (e.g. He, C, N, O, Na, and Al), known as ‘multiple populations’ (MPs). However, MPs are not restricted to ancient clusters, with massive clusters down to ∼2 Gyr showing signs of chemical variations. This suggests that young and old clusters share the same formation mechanism but most of the work to date on younger clusters has focused on N variations. Initial studies even suggested that younger clusters may not host spreads in other elements beyond N (e.g. Na), calling into question whether these abundance variations share the same origin as in the older GCs. In this work, we combine Hubble Space Telescope (HST) photometry with Very Large Telescope (VLT)/Multi-Unit Spectroscopic Explorer (MUSE) spectroscopy of a large sample of red giant branch (RGB) stars (338) in the Large Magellanic Cloud cluster NGC 1978, the youngest globular to date with reported MPs in the form of N spreads. By combining the spectra of individual RGB stars into N-normal and N-enhanced samples, based on the ‘chromosome map’ derived from HST, we search for mean abundance variations. Based on the NaD line, we find a Na difference of Δ[Na/Fe] = 0.07 ± 0.01 between the populations. While this difference is smaller than typically found in ancient GCs (which may suggest a correlation with age), this result further confirms that the MP phenomenon is the same, regardless of cluster age and host galaxy. As such, these young clusters offer some of the strictest tests for theories on the origin of MPs.


2009 ◽  
Vol 5 (S266) ◽  
pp. 326-332
Author(s):  
S. Villanova ◽  
G. Piotto ◽  
A. F. Marino ◽  
A. P. Milone ◽  
A. Bellini ◽  
...  

AbstractWe present an abundance analysis based on high-resolution spectra of red-giant-branch (RGB) stars in the Galactic globular clusters NGC 6121 (M4) and NGC 6656 (M22). Our aim was to study their stellar population in the context of the multipopulation phenomenon recently discovered to affect some globular clusters. Analysis was performed for the following elements: O, Na, Mg, Al, Ca, Fe, Y, and Ba. Spectroscopic data were completed by high-precision wide-field U BV IC ground-based photometry and HST/ACS observations. For M4, we find a well-defined Na–O anticorrelation composed of two distinct groups of stars with significantly different Na and O content. The two groups of Na-rich and Na-poor stars populate two different regions along the RGB. As regards M22, Na and O follow the well-known anticorrelation found in many other GCs. However, at odds with M4, it appears to be continuous without any hint of clumpiness. On the other hand, we identified two clearly separated groups of stars with significantly different abundances of the s-process elements Y, Zr and Ba. The relative numbers of the members of both groups are very similar to the ratio of the stars in the two subgiant branches of M22 recently found by Piotto (2009). The s-element-rich stars are also richer in iron and have higher Ca abundances. This makes M22 the second cluster after ω Centauri where an intrinsic spread in Fe was found. Both spectroscopic and photometric results imply the presence of two stellar populations in M4 and M22, even if both clusters have completely different characteristics.


2013 ◽  
pp. 25-45
Author(s):  
R. Caimmi

Starting from recent determination of Fe, O, Na abundances on a restricted sample (N = 67) of halo and thick disk stars, a natural and well motivated selection criterion is defined for the classification globular cluster stars. An application is performed to M13 using a sample (N = 113) for which Fe, O, Na abundances have been recently inferred from observations. A comparison is made between the current and earlier M13 star classifications. Both O and Na empirical differential abundance distributions are determined for each class and for the whole sample (with the addition of Fe in the last case) and compared with their theoretical counterparts due to cosmic scatter obeying a Gaussian distribution whose parameters are inferred from related subsamples. The occurrence of an agreement between the empirical and theoretical distributions is interpreted as absence of significant chemical evolution and vice versa. The procedure is repeated with regard to four additional classes depending on whether oxygen and sodium abundance is above (stage CE) or below (stage AF) a selected threshold. Both O and Na empirical differential abundance distributions, related to the whole sample, exhibit a linear fit for the AF and CE stage. Within the errors, the oxygen slope for the CE stage is equal and of opposite sign with respect to the sodium slope for AF stage, while the contrary holds when dealing with the oxygen slope for the AF stage with respect to the sodium slope for the CE stage. In the light of simple models of chemical evolution applied to M13, oxygen depletion appears to be mainly turned into sodium enrichment for [O/H]? -1.35 and [Na/H]? -1.45, while one or more largely preferred channels occur for [O/H]< -1.35 and [Na/H]> -1.45. In addition, the primordial to the current M13 mass ratio can be inferred from the true sodium yield in units of the sodium solar abundance. Though the above results are mainly qualitative due to large (-+1.5 dex) uncertainties in abundance determination, still the exhibited trend is expected to be real. The proposed classification of globular cluster stars may be extended in a twofold manner, namely to: (i) elements other than Na and Fe and (ii) globular clusters other than M13.


2019 ◽  
Vol 488 (1) ◽  
pp. 482-494 ◽  
Author(s):  
C B Pereira ◽  
N A Drake ◽  
F Roig

Abstract We present a new abundance analysis of HD 55496, previously known as a metal-poor barium star. We found that HD 55496 has a metallicity [Fe/H]  = −1.55 and is s-process enriched. We find that HD 55496 presents four chemical peculiarities: (i) a Na–O abundance anticorrelation; (ii) it is aluminium rich; (iii) it is carbon poor for an s-process enriched star, and (iv) the heavy second s-process peak elements, such as Ba, La, Ce, and Nd, present smaller abundances than the light s-process elements, such as Sr, Y, and Zr, which is not usually observed among the chemically peculiar binary stars at this metallicity. The heavy-element abundance pattern suggests that the main source of the neutrons is the 22Ne(α,n)25Mg reaction. Taking all these abundance evidences together into consideration strongly suggests that HD 55496 is a ‘second-generation of globular cluster stars’ formed from gas already strongly enriched in s-process elements and now is a field halo object. Our dynamical analysis, however, indicates that the past encounter probabilities with the known globular clusters are very low ($\le \!6{{\ \rm per\ cent}}$). This evidence, together with the retrograde motion, points to a halo intruder possibly originated from the tidal disruption of a dwarf galaxy.


2018 ◽  
Vol 616 ◽  
pp. A181 ◽  
Author(s):  
L. Monaco ◽  
S. Villanova ◽  
G. Carraro ◽  
A. Mucciarelli ◽  
C. Moni Bidin

Context. Globular clusters are known to host multiple stellar populations, which are a signature of their formation process. The globular cluster E3 is one of the few low-mass globulars that is thought not to host multiple populations. Aims. We investigate red giant branch stars in E3 with the aim of providing a first detailed chemical inventory for this cluster, we determine its radial velocity, and we provide additional insights into the possible presence of multiple populations in this cluster. Methods. We obtained high-resolution FLAMES-UVES/VLT spectra of four red giant branch stars likely members of E3. We performed a local thermodynamic equilibrium abundance analysis based on one-dimensional plane parallel ATLAS9 model atmospheres. Abundances were derived from line equivalent widths or spectrum synthesis. Results. We measured abundances of Na and of iron peak (Fe, V, Cr, Ni, Mn), α(Mg, Si, Ca, Ti), and neutron capture elements (Y, Ba, Eu). The mean cluster heliocentric radial velocity, metallicity, and sodium abundance ratio are νhelio = 12.6 ± 0.4 km s−1(σ = 0.6 ± 0.2 km s−1), [Fe/H] = −0.89 ± 0.08 dex, and [Na/Fe] = 0.18 ± 0.07 dex, respectively. The low Na abundance with no appreciable spread is suggestive of a cluster dominated by first-generation stars in agreement with results based on lower resolution spectroscopy. The low number of stars observed does not allow us to rule out a minor population of second-generation stars. The observed chemical abundances are compatible with the trends observed in Milky Way stars.


1988 ◽  
Vol 126 ◽  
pp. 489-490
Author(s):  
B. Cameron Reed ◽  
Charles J. Peterson

We have made an analysis of the visual photometric data contained in the Catalogue of Concentric Aperture UBVRI Photoelectric Photometry of Globular Clusters (Peterson 1986). Structural parameters have been obtained by use of the Simplex algorithm of Caceci and Cacheris (1984) to fit the model curves of King (1966) to the run of cluster luminosity with radius. We find that concentric aperture photometry alone can be used to determine globular cluster core radii and central surface brigtnesses reliably. Application of this techique, however, is limited to about two-thirds of the known clusters of the Galaxy because no or inadequate numbers of photometric measurements exist for the remaining clusters. Accurate determination of cluster concentration classes still requires use of other types of data, such as star counts.


1988 ◽  
Vol 126 ◽  
pp. 121-131
Author(s):  
Pierre Demarque

The use of luminosity functions in the following areas is reviewed: (a) the determination of the helium content and ages of the globular clusters; (b) the testing of stellar structure theory; and (c) the determination of the initial mass function of globular clusters.


1973 ◽  
Vol 21 ◽  
pp. 131-144
Author(s):  
M. W. Feast

AbstractThere are up to 14 known Mira variables in seven globular clusters, though several have not yet been confirmed as radial velocity members. The periods of only 5 are known, all near 200 days. The clusters seem to form a compact group of relatively metal rich clusters. In 3 or 4 cases spectroscopy shows that the giant branches of these clusters penetrate into the M types. The Mira-containing clusters also contain red variables of shorter period and smaller amplitude which are generally also M type stars. Stars apparently evolve to the red of the giant tip as variables of increasing amplitude and period. Effects of TiO blanketing on the (B — V) colours may be anticipated in these clusters.Besides variables at the red giant tip the metal poor globular cluster ω Cen contains variables with strong TiO bands. Photometry, including recent J, H, K, L photometry by Glass shows that these stars are very cool objects. They indicate an extension of the giant branch considerably cooler than previously considered for metal poor clusters.V1, NGC 121 in the Small Magellanic Cloud has a spectrum indicative of an SRd variable. It is not yet clear whether galactic stars similar to this star exist or not.


Sign in / Sign up

Export Citation Format

Share Document