scholarly journals Simultaneous transverse oscillations of a coronal loop and a filament excited by a circular-ribbon flare

2020 ◽  
Vol 642 ◽  
pp. A159
Author(s):  
Q. M. Zhang

Aims. The aim of this study is to investigate the excitation of kink oscillations in coronal loops and filaments, by analyzing a C3.4 circular-ribbon flare associated with a blowout jet in active region 12434 on 2015 October 16. Methods. The flare was observed in ultraviolet and extreme-ultraviolet wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO) spacecraft. The line-of-sight (LOS) magnetograms of the photosphere were observed by the Helioseismic and Magnetic Imager on board SDO. Soft X-ray fluxes of the flares in 0.5−4 and 1−8 Å were recorded by the GOES spacecraft. Results. The flare excited small-amplitude kink oscillation of a remote coronal loop. The oscillation lasted for ≥4 cycles without significant damping. The amplitude and period are 0.3 ± 0.1 Mm and 207 ± 12 s. Interestingly, the flare also excited transverse oscillation of a remote filament. The oscillation lasted for ∼3.5 cycles with decaying amplitudes. The initial amplitude is 1.7−2.2 Mm. The period and damping time are 437−475 s and 1142−1600 s. The starting times of simultaneous oscillations of coronal loop and filament were concurrent with the hard X-ray peak time. Though small in size and short in lifetime, the flare set off a chain reaction. It generated a bright secondary flare ribbon (SFR) in the chromosphere, remote brightening (RB) that was cospatial with the filament, and intermittent, jet-like flow propagating in the northeast direction. Conclusions. The loop oscillation is most probably excited by the flare-induced blast wave at a speed of ≥1300 km s−1. The excitation of the filament oscillation is more complicated. The blast wave triggers secondary magnetic reconnection far from the main flare, which not only heats the local plasma to higher temperatures (SFR and RB), but produces jet-like flow (i.e., reconnection outflow) as well. The filament is disturbed by the secondary magnetic reconnection and experiences transverse oscillation. These findings provide new insight into the excitation of transverse oscillations of coronal loops and filaments.

2020 ◽  
Vol 633 ◽  
pp. A142 ◽  
Author(s):  
Q. M. Zhang ◽  
R. S. Zheng

Aims. In this paper, we report multiwavelength observations of remote coronal dimmings related to an M1.1 circular-ribbon flare in active region (AR) 12434. Methods. The confined flare without a coronal mass ejection was observed by the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory on 2015 October 16. We obtained global three-dimensional (3D) magnetic fields before the flare using the potential field source surface modeling. Results. A few minutes before the flare hard X-ray peak time (06:13:48 UT), small-scale, weak dimming appeared ∼240″ away from the flare site, which can be observed by AIA only in 131 and 171 Å. Afterward, long and narrow dimmings became evident in all AIA extreme-ultraviolet passbands except 304 Å, while localized core dimming was not clearly observed near the flare site. The large-area dimmings extended southeastward and the areas increased gradually. The total area of dimmings reaches (1.2 ± 0.4) × 104 Mm2 in 193 Å. The maximal relative intensity decreases in 171 and 193 Å reach 90% and 80%, respectively. Subsequently, the dimmings began to replenish and the area decreased slowly, lasting for ≥3 h. The remote dimmings and AR 12434 are connected by large-scale coronal loops. The remote dimmings are associated with the southwest footpoints of coronal loops with weak negative polarities. Possible origins of remote dimmings are discussed.


2013 ◽  
Vol 8 (S300) ◽  
pp. 504-506
Author(s):  
X. L. Yan ◽  
Z. K. Xue ◽  
Z. X. Mei

AbstractBy using the data of Solar Dynamics Observatory (SDO), we present a case study of the contraction of the overlying coronal loop and the rotation motion of a sigmoid filament on 2012 May 22. At the beginning of the filament eruption, the overlying coronal loop experienced a significant contraction. In the following, the filament started to rotate counterclockwise. We also carried the simulation to investigate the process of the filament eruption.


2019 ◽  
Author(s):  
Yamini K. Rao ◽  
Abhishek K. Srivastava ◽  
Pradeep Kayshap ◽  
Bhola N. Dwivedi

Abstract. We observed quiescent coronal loops using multi-wavelength observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) on 2016 April 13. The flows at the footpoints of such loop systems are studied using spectral data from Interface Region Imaging Spectrograph (IRIS). The Doppler velocity distributions at the footpoints lying in the moss region show the negligible or small flows at Ni I, Mg II k3 and C II line corresponding to upper photospheric and chromospheric emissions. Significant red-shifts (downflows) ranging from (1 to 7) km s−1 are observed at Si IV (1393.78 Å; log(T/K) = 4.8) which is found to be consistent with the existing results regarding dynamical loop systems and moss regions. Such downflows agree well with the impulsive heating mechanism reported earlier.


2020 ◽  
Vol 638 ◽  
pp. A32 ◽  
Author(s):  
Q. M. Zhang ◽  
J. Dai ◽  
Z. Xu ◽  
D. Li ◽  
L. Lu ◽  
...  

Aims. We report our multiwavelength observations of two homologous circular-ribbon flares in active region 11991 on 2014 March 5, focusing on the transverse oscillations of an extreme-ultraviolet (EUV) loop excited by the flares. Methods. The flares were observed in ultraviolet and EUV wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory spacecraft. These flares were also observed in Hα line center by the 1 m New Vacuum Solar Telescope. Soft X-ray fluxes of the flares in 0.5–4 and 1–8 Å were recorded by the GOES spacecraft. Results. The transverse oscillations are of fast standing kink mode. The first-stage oscillation triggered by the C2.8 flare is decayless with lower amplitudes (310–510 km). The periods (115–118 s) in different wavelengths are nearly the same, indicating coherent oscillations. The magnetic field of the loop is estimated to be 65–78 G. The second-stage oscillation triggered by the M1.0 flare is decaying with larger amplitudes (1250–1280 km). The periods decrease from 117 s in 211 Å to 70 s in 171 Å, implying a decrease of loop length or an implosion after a gradual expansion. The damping time, which is 147–315 s, increases with the period, so that the values of τ/P are close to each other in different wavelengths. The thickness of the inhomogeneous layer is estimated to be ∼0″​​​.45 under the assumption of resonant absorption. Conclusions. This is the first observation of the excitation of two kink-mode loop oscillations by two sympathetic flares. The results are important to understand the excitation of kink oscillations of coronal loops and hence the energy balance in the solar corona. Our findings also validate the prevalence of significantly amplified amplitudes of oscillations by successive drivers.


Author(s):  
Narges Fathalian ◽  
Seyedeh Somayeh Hosseini Rad ◽  
Nasibeh Alipour ◽  
Hossein Safari

Abstract Here, we study the temperature structure of flaring and non-flaring coronal loops, using extracted loops from images taken in six extreme ultraviolet (EUV) channels recorded by Atmospheric Imaging Assembly (AIA)/ Solar Dynamic Observatory (SDO). We use data for loops of X2.1-class-flaring active region (AR11283) during 22:10UT till 23:00UT, on 2011, September 6; and non-flaring active region (AR12194) during 08:00:00UT till 09:00:00UT on 2014, October 26. By using spatially-synthesized Gaussian DEM forward-fitting method, we calculate the peak temperatures for each strip of the loops. We apply the Lomb-Scargle method to compute the oscillations periods for the temperature series of each strip. The periods of the temperature oscillations for the flaring loops are ranged from 7 min to 28.4 min. These temperature oscillations show very close behavior to the slow-mode oscillation. We observe that the temperature oscillations in the flaring loops are started at least around 10 minutes before the transverse oscillations and continue for a long time duration even after the transverse oscillations are ended. The temperature amplitudes are increased at the flaring time (during 20 min) in the flaring loops. The periods of the temperatures obtained for the non-flaring loops are ranged from 8.5 min to 30 min,but their significances are less (below 0.5) in comparison with the flaring ones (near to one). Hence the detected temperature periods for the non-flaring loops' strips are less probable in comparison with the flaring ones, and maybe they are just fluctuations. Based on our confined observations, it seems that the flaring loops' periods show more diversity and their temperatures have wider ranges of variation than the non-flaring ones. More accurate commentary in this respect requires more extensive statistical research and broader observations.


1983 ◽  
Vol 102 ◽  
pp. 397-400
Author(s):  
P.C.H. Martens ◽  
M. Kuperus

A theory for the thermal stability of hot coronal loops is presented, which is based on the resonant electrodynamic heating theory of Ionson (1982) and the evaporation/condensation scenario of Krall and Antiochos (1980). The theory predicts that gradual changes in the length of a loop or in its magnetic field strength can trigger catastrophic changes in the X-ray visibility of the loop, without the need for a change in the magnetic field topology.A natural explanation is thereby given for the observations of X-ray brightenings in loops and loop evacuations with coronal rain.


2004 ◽  
Vol 219 ◽  
pp. 503-516
Author(s):  
Markus J. Aschwanden ◽  
Alan M. Title

We select some highlights and new results that have been obtained from detailed “microscopic” observations of coronal loop structures with the Transition Region and Coronal Explorer (TRACE) and Extreme Ultraviolet Imager (EIT) instruments, including: (1) the inhomogeneous substructure of EUV loops, (2) the dynamic and non-hydrostatic nature, (3) the non-uniform heating, (4) the magnetic topology at the loop foot-points, (5) the magnetic energy budget for heating, and (6) oscillations and waves in coronal loops.


2018 ◽  
Vol 615 ◽  
pp. L9 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
S. K. Solanki

Context. Magnetic energy is required to heat the corona, the outer atmosphere of the Sun, to millions of degrees. Aims. We study the nature of the magnetic energy source that is probably responsible for the brightening of coronal loops driven by nanoflares in the cores of solar active regions. Methods. We consider observations of two active regions (ARs), 11890 and 12234, in which nanoflares have been detected. To this end, we use ultraviolet (UV) and extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) for coronal loop diagnostics. These images are combined with the co-temporal line-of-sight magnetic field maps from the Helioseismic and Magnetic Imager (HMI) onboard SDO to investigate the connection between coronal loops and their magnetic roots in the photosphere. Results. The core of these ARs exhibit loop brightening in multiple EUV channels of AIA, particularly in its 9.4 nm filter. The HMI magnetic field maps reveal the presence of a complex mixed polarity magnetic field distribution at the base of these loops. We detect the cancellation of photospheric magnetic flux at these locations at a rate of about 1015 Mx s−1. The associated compact coronal brightenings directly above the cancelling magnetic features are indicative of plasma heating due to chromospheric magnetic reconnection. Conclusions. We suggest that the complex magnetic topology and the evolution of magnetic field, such as flux cancellation in the photosphere and the resulting chromospheric reconnection, can play an important role in energizing active region coronal loops driven by nanoflares. Our estimate of magnetic energy release during flux cancellation in the quiet Sun suggests that chromospheric reconnection can also power the quiet corona.


2018 ◽  
Vol 617 ◽  
pp. A9
Author(s):  
Aidan M. O’Flannagain ◽  
Shane A. Maloney ◽  
Peter T. Gallagher ◽  
Philippa Browning ◽  
Jose Refojo

Context. Magnetic reconnection is believed to be the primary mechanism by which non-potential energy stored in coronal magnetic fields is rapidly released during solar eruptive events. Unfortunately, owing to the small spatial scales on which reconnection is thought to occur, it is not directly observable in the solar corona. However, larger scale processes, such as associated inflow and outflow, and signatures of accelerated particles have been put forward as evidence of reconnection. Aims. Using a combination of observations we explore the origin of a persistent Type I radio source that accompanies a coronal X-shaped structure during its passage across the disk. Of particular interest is the time range around a partial collapse of the structure that is associated with inflow, outflow, and signatures of particle acceleration. Methods. Imaging radio observations from the Nançay Radioheliograph were used to localise the radio source. Solar Dynamics Observatory (SDO) AIA extreme ultraviolet (EUV) observations from the same time period were analysed, looking for evidence of inflows and outflows. Further mpole magnetic reconstructions using SDO HMI observations allowed the magnetic connectivity associated with the radio source to be determined. Results. The Type I radio source was well aligned with a magnetic separator identified in the extrapolations. During the partial collapse, gradual (1 km s−1) and fast (5 km s−1) inflow phases and fast (30 km s−1) and rapid (80–100 km s−1) outflow phases were observed, resulting in an estimated reconnection rate of ∼0.06. The radio source brightening and dimming was found to be co-temporal with increased soft X-ray emission observed in both Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary Operational Environmental Satellite (GOES). Conclusions. We interpret the brightening and dimming of the radio emission as evidence for accelerated electrons in the reconnection region responding to a gradual fall and rapid rise in electric drift velocity, in response to the inflowing and outflowing field lines. These results present a comprehensive example of 3D null-point reconnection.


Sign in / Sign up

Export Citation Format

Share Document