scholarly journals Solar Magnetic Loops Observed with TRACE and EIT

2004 ◽  
Vol 219 ◽  
pp. 503-516
Author(s):  
Markus J. Aschwanden ◽  
Alan M. Title

We select some highlights and new results that have been obtained from detailed “microscopic” observations of coronal loop structures with the Transition Region and Coronal Explorer (TRACE) and Extreme Ultraviolet Imager (EIT) instruments, including: (1) the inhomogeneous substructure of EUV loops, (2) the dynamic and non-hydrostatic nature, (3) the non-uniform heating, (4) the magnetic topology at the loop foot-points, (5) the magnetic energy budget for heating, and (6) oscillations and waves in coronal loops.

2018 ◽  
Vol 615 ◽  
pp. L9 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
S. K. Solanki

Context. Magnetic energy is required to heat the corona, the outer atmosphere of the Sun, to millions of degrees. Aims. We study the nature of the magnetic energy source that is probably responsible for the brightening of coronal loops driven by nanoflares in the cores of solar active regions. Methods. We consider observations of two active regions (ARs), 11890 and 12234, in which nanoflares have been detected. To this end, we use ultraviolet (UV) and extreme ultraviolet (EUV) images from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) for coronal loop diagnostics. These images are combined with the co-temporal line-of-sight magnetic field maps from the Helioseismic and Magnetic Imager (HMI) onboard SDO to investigate the connection between coronal loops and their magnetic roots in the photosphere. Results. The core of these ARs exhibit loop brightening in multiple EUV channels of AIA, particularly in its 9.4 nm filter. The HMI magnetic field maps reveal the presence of a complex mixed polarity magnetic field distribution at the base of these loops. We detect the cancellation of photospheric magnetic flux at these locations at a rate of about 1015 Mx s−1. The associated compact coronal brightenings directly above the cancelling magnetic features are indicative of plasma heating due to chromospheric magnetic reconnection. Conclusions. We suggest that the complex magnetic topology and the evolution of magnetic field, such as flux cancellation in the photosphere and the resulting chromospheric reconnection, can play an important role in energizing active region coronal loops driven by nanoflares. Our estimate of magnetic energy release during flux cancellation in the quiet Sun suggests that chromospheric reconnection can also power the quiet corona.


1994 ◽  
Vol 144 ◽  
pp. 189-193
Author(s):  
M. A. Berger

AbstractHow do we model coronal loops which contain a rich internal structure? Coronal loops usually lie close to the equilibrium state, but equilibrium fields are generally nonlinear, three-dimensional, and contain intense current layers. Nevertheless, it is important to study highly structured loops. Small reconnection events (microflares and nanoflares) which simplify the structure may be the primary source of heat in the closed corona. The magnetic energy released during a reconnection event can be estimated if one knows the equilibrium energy before and after the event. Furthermore, structured or tangled fields dissipate wave energy more efficiently than smooth fields. Here we present a method for studying tangled fields. Lower bounds can be placed on the energy of the equilibrium field, given a measure of the topological complexity known as the crossing number. These bounds provide an estimate of the energy generated in a coronal loop due to random photospheric motions. This calculation is used to estimate the heating rate in Parker’s topological dissipation model.


2020 ◽  
Vol 642 ◽  
pp. A159
Author(s):  
Q. M. Zhang

Aims. The aim of this study is to investigate the excitation of kink oscillations in coronal loops and filaments, by analyzing a C3.4 circular-ribbon flare associated with a blowout jet in active region 12434 on 2015 October 16. Methods. The flare was observed in ultraviolet and extreme-ultraviolet wavelengths by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO) spacecraft. The line-of-sight (LOS) magnetograms of the photosphere were observed by the Helioseismic and Magnetic Imager on board SDO. Soft X-ray fluxes of the flares in 0.5−4 and 1−8 Å were recorded by the GOES spacecraft. Results. The flare excited small-amplitude kink oscillation of a remote coronal loop. The oscillation lasted for ≥4 cycles without significant damping. The amplitude and period are 0.3 ± 0.1 Mm and 207 ± 12 s. Interestingly, the flare also excited transverse oscillation of a remote filament. The oscillation lasted for ∼3.5 cycles with decaying amplitudes. The initial amplitude is 1.7−2.2 Mm. The period and damping time are 437−475 s and 1142−1600 s. The starting times of simultaneous oscillations of coronal loop and filament were concurrent with the hard X-ray peak time. Though small in size and short in lifetime, the flare set off a chain reaction. It generated a bright secondary flare ribbon (SFR) in the chromosphere, remote brightening (RB) that was cospatial with the filament, and intermittent, jet-like flow propagating in the northeast direction. Conclusions. The loop oscillation is most probably excited by the flare-induced blast wave at a speed of ≥1300 km s−1. The excitation of the filament oscillation is more complicated. The blast wave triggers secondary magnetic reconnection far from the main flare, which not only heats the local plasma to higher temperatures (SFR and RB), but produces jet-like flow (i.e., reconnection outflow) as well. The filament is disturbed by the secondary magnetic reconnection and experiences transverse oscillation. These findings provide new insight into the excitation of transverse oscillations of coronal loops and filaments.


2019 ◽  
Vol 623 ◽  
pp. A176 ◽  
Author(s):  
L. P. Chitta ◽  
A. R. C. Sukarmadji ◽  
L. Rouppe van der Voort ◽  
H. Peter

Context. Densely packed coronal loops are rooted in photospheric plages in the vicinity of active regions on the Sun. The photospheric magnetic features underlying these plage areas are patches of mostly unidirectional magnetic field extending several arcsec on the solar surface. Aims. We aim to explore the transient nature of the magnetic field, its mixed-polarity characteristics, and the associated energetics in the active region plage using high spatial resolution observations and numerical simulations. Methods. We used photospheric Fe I 6173 Å spectropolarimetric observations of a decaying active region obtained from the Swedish 1-m Solar Telescope (SST). These data were inverted to retrieve the photospheric magnetic field underlying the plage as identified in the extreme-ultraviolet emission maps obtained from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). To obtain better insight into the evolution of extended unidirectional magnetic field patches on the Sun, we performed 3D radiation magnetohydrodynamic simulations of magnetoconvection using the MURaM code. Results. The observations show transient magnetic flux emergence and cancellation events within the extended predominantly unipolar patch on timescales of a few 100 s and on spatial scales comparable to granules. These transient events occur at the footpoints of active region plage loops. In one case the coronal response at the footpoints of these loops is clearly associated with the underlying transient. The numerical simulations also reveal similar magnetic flux emergence and cancellation events that extend to even smaller spatial and temporal scales. Individual simulated transient events transfer an energy flux in excess of 1 MW m−2 through the photosphere. Conclusions. We suggest that the magnetic transients could play an important role in the energetics of active region plage. Both in observations and simulations, the opposite-polarity magnetic field brought up by transient flux emergence cancels with the surrounding plage field. Magnetic reconnection associated with such transient events likely conduits magnetic energy to power the overlying chromosphere and coronal loops.


2019 ◽  
Vol 627 ◽  
pp. L5 ◽  
Author(s):  
L. P. Chitta ◽  
H. Peter ◽  
L. Li

A solar filament is a dense cool condensation that is supported and thermally insulated by magnetic fields in the rarefied hot corona. Its evolution and stability, leading to either an eruption or disappearance, depend on its coupling with the surrounding hot corona through a thin transition region, where the temperature steeply rises. However, the heating and dynamics of this transition region remain elusive. We report extreme-ultraviolet observations of quiescent filaments from the Solar Dynamics Observatory that reveal prominence spicules propagating through the transition region of the filament-corona system. These thin needle-like jet features are generated and heated to at least 0.7 MK by turbulent motions of the material in the filament. We suggest that the prominence spicules continuously channel the heated mass into the corona and aid in the filament evaporation and decay. Our results shed light on the turbulence-driven heating in magnetized condensations that are commonly observed on the Sun and in the interstellar medium.


2013 ◽  
Vol 8 (S300) ◽  
pp. 504-506
Author(s):  
X. L. Yan ◽  
Z. K. Xue ◽  
Z. X. Mei

AbstractBy using the data of Solar Dynamics Observatory (SDO), we present a case study of the contraction of the overlying coronal loop and the rotation motion of a sigmoid filament on 2012 May 22. At the beginning of the filament eruption, the overlying coronal loop experienced a significant contraction. In the following, the filament started to rotate counterclockwise. We also carried the simulation to investigate the process of the filament eruption.


1985 ◽  
Vol 107 ◽  
pp. 61-81
Author(s):  
James F. Drake

The current theoretical understanding of the linear and nonlinear evolution of resistive tearing instabilities in sheared magnetic fields is reviewed. The physical mechanisms underlying this instability are emphasized. Some of the problems which are encountered in developing a model of magnetic energy dissipation in coronal loops are discussed and possible solutions are suggested.


Sign in / Sign up

Export Citation Format

Share Document