scholarly journals New mid-infrared imaging constraints on companions and protoplanetary disks around six young stars

2021 ◽  
Vol 648 ◽  
pp. A92
Author(s):  
D. J. M. Petit dit de la Roche ◽  
N. Oberg ◽  
M. E. van den Ancker ◽  
I. Kamp ◽  
R. van Boekel ◽  
...  

Context. Mid-infrared (mid-IR) imaging traces the sub-micron and micron-sized dust grains in protoplanetary disks and it offers constraints on the geometrical properties of the disks and potential companions, particularly if those companions have circumplanetary disks. Aims. We use the VISIR instrument and its upgrade NEAR on the VLT to take new mid-IR images of five (pre-)transition disks and one circumstellar disk with proposed planets and obtain the deepest resolved mid-IR observations to date in order to put new constraints on the sizes of the emitting regions of the disks and the presence of possible companions. Methods. We derotated and stacked the data to find the disk properties. Where available, we compare the data to PRODIMO (Protoplanetary Disk Model) radiation thermo-chemical models to achieve a deeper understanding of the underlying physical processes within the disks. We applied the circularised point spread function subtraction method to find upper limits on the fluxes of possible companions and model companions with circumplanetary disks. Results. We resolved three of the six disks and calculated position angles, inclinations, and (upper limits to) sizes of emission regions in the disks, improving upper limits on two of the unresolved disks. In all cases the majority of the mid-IR emission comes from small inner disks or the hot inner rims of outer disks. We refined the existing PRODIMO HD 100546 model spectral energy distribution (SED) fit in the mid-IR by increasing the PAH abundance relative to the ISM, adopting coronene as the representative PAH, and increasing the outer cavity radius to 22.3 AU. We produced flux estimates for putative planetary-mass companions and circumplanetary disks, ruling out the presence of planetary-mass companions with L > 0.0028 L⊙ for a > 180 AU in the HD 100546 system. Upper limits of 0.5–30 mJy are obtained at 8–12 μm for potential companions in the different disks. We rule out companions with L > 10−2 L⊙ for a > 60 AU in TW Hydra, a > 110 AU in HD 169142, a > 150 AU in HD 163296, and a > 160 AU in HD 36112. Conclusions. The mid-IR emission comes from the central regions and traces the inner areas of the disks, including inner disks and inner rims of outer disks. Planets with mid-IR luminosities corresponding to a runaway accretion phase can be excluded from the HD 100546, HD 169142, TW Hydra, and HD 36112 systems at separations >1′′. We calculated an upper limit to the occurrence rate of wide-orbit massive planets with circumplanetary disks of 6.2% (68% confidence). Future observations with METIS on the ELT will be able to achieve a factor of 10 better sensitivity with a factor of five better spatial resolution. MIRI on JWST will be able to achieve 250 times better sensitivity. Both will possibly detect the known companions to all six targets.

2007 ◽  
Vol 3 (S249) ◽  
pp. 359-368
Author(s):  
A. Carmona ◽  
M. E. van den Ancker ◽  
Th. Henning ◽  
Ya. Pavlyuchenkov ◽  
C. P. Dullemond ◽  
...  

AbstractThe mass and dynamics of protoplanetary disks are dominated by molecular hydrogen (H2). However, observationally very little is known about the H2. In this paper, we discuss two projects aimed to constrain the properties of H2 in the disk's planet forming region (R<50AU). First, we present a sensitive survey for pure-rotational H2 emission at 12.278 and 17.035 μm in a sample of nearby Herbig Ae/Be and T Tauri stars using VISIR, ESO's VLT high-resolution mid-infrared spectrograph. Second, we report on a search for H2 ro-vibrational emission at 2.1228, 2.2233 and 2.2477 μm in the classical T Tauri star LkHα 264 and the debris disk 49 Cet employing CRIRES, ESO's VLT high-resolution near-infrared spectrograph.VISIR project: none of the sources show H2 mid-IR emission. The observed disks contain less than a few tenths of MJupiter of optically thin H2 at 150 K, and less than a few MEarth at T>300 K. % and higher T. Our non-detections are consistent with the low flux levels expected from the small amount of H2 gas in the surface layer of a Chiang and Goldreich (1997) Herbig Ae two-layer disk model. In our sources the H2 and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust<2) and the gas-to-dust ratio in the surface layer is very likely <1000.CRIRES project: The H2 lines at 2.1218 μm and 2.2233 μm are detected in LkHα 264. An upper limit on the 2.2477 μm H2 line flux in LkHα 264 is derived. 49 Cet does not exhibit H2 emission in any of observed lines. There are a few MMoon of optically thin hot H2 in the inner disk (∼0.1 AU) of LkHα 264, and less than a tenth of a MMoon of hot H2 in the inner disk of 49 Cet. The shape of the 1–0 S(0) line indicates that LkHα disk is close to face-on (i<35o). The measured 1–0 S(0)/1–0 S(1) and 2–1 S(1)/1–0 S(1) line ratios in LkHα 264 indicate that the H2 is thermally excited at T<1500 K. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that the gas in the inner disk of 49 Cet has dissipated.


2006 ◽  
Vol 2 (S237) ◽  
pp. 425-425
Author(s):  
A. Hetem ◽  
J. Gregorio-Hetem

AbstractWe have developed geometric disk models to study the circumstellar geometries by fitting the spectral energy distribution (SED) of T Tauri and Herbig Ae/Be stars. The simulations provide means to recognize the signatures of different disk structures, including the effects due to external UV photoevaporation.Following Chiang & Goldreich (1997) and Dullemond et al. (2001), we used hydrostatic, radiative equilibrium models for passive, reprocessing flared disks. The grains in the surface of the disk are directly exposed to the radiation from the star and the interior of the disk is heated by diffusion from the surface. Adopting this two-layers disk structure, our disk model was improved in order to optimize the parameters estimated by using a calculation technique based on genetic algorithms presented by Bentley & Corne (2002).In the present work, we apply the code to model the SED of protoplanetary disks, which have being destroyed by photoevaporation due to the presence of ionizing OB stars, as the example of Trapezium region in the Orion Nebula. We compare geometric disk characteristics and physical conditions evaluated by our method to those obtained to the “proplyds” studied by Scally & Clarke (2001), Robberto et al. (2002) and Smith et al. (2005), among others. We also conclude that the parameter estimation by genetic algorithms assures accurate and efficient calculations.


2021 ◽  
Vol 21 (10) ◽  
pp. 260
Author(s):  
Cheng Cheng ◽  
Jia-Sheng Huang ◽  
Hai Xu ◽  
Gao-Xiang Jin ◽  
Chuan He ◽  
...  

Abstract The Spitzer Extended Deep Survey (SEDS) as a deep and wide mid-infrared (MIR) survey project provides a sample of 500 000+ sources spreading 1.46 square degree and a depth of 26 AB mag (3σ). Combining with the previous available data, we build a PSF-matched multi-wavelength photometry catalog from u band to 8 μm. We fit the SEDS galaxies spectral energy distributions by the local galaxy templates. The results show that the SEDS galaxy can be fitted well, indicating the high redshift galaxy (z ∼ 1) shares the same templates with the local galaxies. This study would facilitate the further study of the galaxy luminosity and high redshift mass function.


2014 ◽  
Vol 28 ◽  
pp. 1460176 ◽  
Author(s):  
◽  
G. DE CANEVA ◽  
U. BARRES DE ALMEIDA ◽  
E. LINDFORS ◽  
K. SAITO ◽  
...  

At very high energy (VHE, E> 100 GeV), we count only three blazars of the flat spectrum radio quasars (FSRQs) type to date. The MAGIC experiment detected all three of them; here we present MAGIC observations of 3C 279 and PKS 1510-089. 3C 279 was observed in 2011, without a significant detection, hence upper limits on the differential flux have been computed. The MAGIC observations of PKS 1510-089 in 2012 were triggered by alerts of high activity states and resulted in a significant detection. MAGIC observations are complemented with simultaneous multiwavelength observations in high energy γ rays, X-rays, optical and radio wavelengths and polarization measurements. With the study of the spectral features and the variability observed, we aim to identify the physical processes responsible for the behavior of this source class. In particular, we propose coherent scenarios, which take into account both the modeling of the spectral energy distribution and the constraints obtained from the lightcurves.


2014 ◽  
Vol 9 (S310) ◽  
pp. 212-213
Author(s):  
Ramiro Álvarez ◽  
Erick Nagel

AbstractWe develop numerical tools to detect and quantify the mass and area for all structures of a protoplanetary disk with different optical depths. We consider two planets of 0.1 MJ. They are initially at 12.5 and 20 AU embedded in a viscous disk, where planetary mass accretion and migration are allowed. We find a gap region with optically thick streams, this region is characterized by an optically thin filling factor near to 1. Additionally, we generate the Spectral Energy Distribution of each structure of the disk considering silicate dust. Our tools are useful to identify the locations of structures and sub-structures as possible sites where the material is accumulated.


2006 ◽  
Vol 2 (S235) ◽  
pp. 180-183
Author(s):  
Vassilis Charmandaris

AbstractI present a brief review of some of the mid-infrared properties of interacting galaxies as these were revealed using observations from the Infrared Space Observatory and Spitzer Space Telescope over the last decade. The variation of the infrared spectral energy distribution in interacting galaxies can be used as an extinction free tracer not only of the location of the star formation activity but also of the physical mechanism dominating their energy production.‡.


2001 ◽  
Vol 557 (2) ◽  
pp. 637-645 ◽  
Author(s):  
Daigo Tomono ◽  
Yoshiyuki Doi ◽  
Tomonori Usuda ◽  
Tetsuo Nishimura

2018 ◽  
Vol 615 ◽  
pp. A164 ◽  
Author(s):  
B. Vollmer ◽  
M. Schartmann ◽  
L. Burtscher ◽  
F. Marin ◽  
S. Hönig ◽  
...  

Infrared high-resolution imaging and interferometry show that the dust distribution is frequently elongated along the polar direction of an AGN. In addition, interferometric mm line observations have revealed a bipolar outflow in a direction nearly perpendicular to the nuclear disk. To explain these findings, we developed a model scenario for the inner ~30 pc of an AGN. The structure of the gas within this region is entirely determined by the gas inflow from larger scales. We assumed a rotating thick gas disk between about one and ten parsec. External gas accretion adds mass and injects energy via gas compression into this gas disk and drives turbulence. We extended the description of a massive turbulent thick gas disk developed in a recent paper by adding a magnetocentrifugal wind. Our disks are assumed to be strongly magnetized via equipartition between the turbulent gas pressure and the energy density of the magnetic field. In a second step, we built 3D density cubes based on the analytical model, illuminated them with a central source, and made radiative transfer calculations. In a third step, we calculated mid-infrared (MIR) visibility amplitudes and compared them to available interferometric observations. We show that magnetocentrifugal winds starting from a thin and thick gas disk are viable in active galaxy centers. The magnetic field associated with this thick gas disk plays a major role in driving a magnetocentrifugal wind at a distance of ~1 pc from the central black hole. Once the wind is launched, it is responsible for the transport of angular momentum and the gas disk can become thin. A magnetocentrifugal wind is also expected above the thin magnetized gas disk. The structure and outflow rate of this wind is determined by the properties of the thick gas disk. The outflow scenario can account for the elongated dust structures, outer edges of the thin maser disks, and molecular outflows observed in local AGN. The models reproduce the observed terminal wind velocities, the scatter of the MIR – intrinsic X-ray correlation, and point source fractions. An application of the model to the Circinus galaxy and NGC 1068 shows that the infrared spectral energy distribution, available MIR interferometric observations, and optical polarization can be reproduced in a satisfactory way, provided that (i) a puff-up at the inner edge of the thin disk is present and (ii) a local screen with an optical depth of τV ~ 20 in form of a local gas filament and/or a warp of the thick disk hide a significant fraction of both nuclei. Our thick disk, wind, thin disk model is thus a promising scenario for local Seyfert galaxies.


Sign in / Sign up

Export Citation Format

Share Document