scholarly journals First light observations of the solar wind in the outer corona with the Metis coronagraph

Author(s):  
M. Romoli ◽  
E. Antonucci ◽  
V. Andretta ◽  
Keyword(s):  
2020 ◽  
Vol 642 ◽  
pp. A130
Author(s):  
M. Lazar ◽  
V. Pierrard ◽  
S. Poedts ◽  
H. Fichtner

A suprathermal halo population of electrons is ubiquitous in space plasmas, as evidence of their departure from thermal equilibrium even in the absence of anisotropies. The origin, properties, and implications of this population, however, are poorly known. We provide a comprehensive description of solar wind halo electrons in the ecliptic, contrasting their evolutions with heliospheric distance in the slow and fast wind streams. At relatively low distances less than 1 AU, the halo parameters show an anticorrelation with the solar wind speed, but this contrast decreases with increasing distance and may switch to a positive correlation beyond 1 AU. A less monotonic evolution is characteristic of the high-speed winds, in which halo electrons and their properties (e.g., number densities, temperature, plasma beta) exhibit a progressive enhancement already distinguishable at about 0.5 AU. At this point, magnetic focusing of electron strahls becomes weaker and may be counterbalanced by the interactions of electrons with wave fluctuations. This evolution of halo electrons between 0.5 AU and 3.0 AU in the fast winds complements previous results well, indicating a substantial reduction of the strahl and suggesting that significant fractions of strahl electrons and energy may be redistributed to the halo population. On the other hand, properties of halo electrons at low distances in the outer corona suggest a subcoronal origin and a direct implication in the overheating of coronal plasma via velocity filtration.


1980 ◽  
Vol 91 ◽  
pp. 105-125
Author(s):  
C. D'Uston ◽  
J. M. Bosqued

In this paper, we briefly review the experimental knowledge gained in the recent years on the interplanetary response to solar long-time scale phenomena such as the coronal magnetic structure and its evolution. Observational evidence that solar wind flow in the outer corona comes from the unipolar diverging magnetic regions of the photosphere is discussed along with relations to coronal holes. High-speed solar wind streams observed within the boundary of interplanetary magnetic sectors are associated with these structures. Their boundaries appear as very narrow velocity shears.


2019 ◽  
Vol 627 ◽  
pp. A18 ◽  
Author(s):  
S. Dolei ◽  
D. Spadaro ◽  
R. Ventura ◽  
A. Bemporad ◽  
V. Andretta ◽  
...  

We derived maps of the solar wind outflow velocity of coronal neutral hydrogen atoms at solar minimum in the altitude range 1.5–4.0 R⊙. We applied the Doppler dimming technique to coronagraphic observations in the UV H I Lyα line at 121.6 nm. The technique exploits the intensity reduction in the coronal line with increasing velocities of the outflowing plasma to determine the solar wind velocity by iterative modelling. The Lyα line intensity is sensitive to the wind outflow velocity and also depends on the physical properties of coronal particles and underlying chromospheric emission. Measurements of irradiance by the chromospheric Lyα radiation in the corona are required for a rigorous application of the Doppler dimming technique, but they are not provided by past and current instrumentations. A correlation function between the H I 121.6 nm and He II 30.4 nm line intensities was used to construct Carrington rotation maps of the non-uniform solar chromospheric Lyα radiation and thus to compute the Lyα line irradiance throughout the outer corona. Approximations concerning the temperature of the scattering H I atoms and exciting solar disc radiation were also adopted to significantly reduce the computational time and obtain a faster procedure for a quick-look data analysis of future coronagraphic observations. The effect of the chromospheric Lyα brightness distribution on the resulting H I outflow velocities was quantified. In particular, we found that the usual uniform-disc approximation systematically leads to an overestimated velocity in the polar and mid-latitude coronal regions up to a maximum of about 50−60 km s−1 closer to the Sun. This difference decreases at higher altitudes, where an increasingly larger chromospheric portion, including both brighter and darker disc features, contributes to illuminate the solar corona, and the non-uniform radiation condition progressively approaches the uniform-disc approximation.


1996 ◽  
Vol 154 ◽  
pp. 65-75
Author(s):  
Steven R. Spangler

AbstractI discuss the use of Very Long Baseline Interferometer (VLBI) phase scintillations to probe the conditions of plasma turbulence in the solar wind. Specific results from 5.0 and 8.4 GHz observations with the Very Long Baseline Array (VLBA) are shown. There are several advantages of phase scintillation measurements. They are sensitive to fluctuations on scales of hundreds to thousands of kilometers, much larger than those probed by IPS intensity scintillations. In addition, with the frequency versatility of the VLBA one can measure turbulence from the outer corona ~ 5 –10 R⊙ to well past the perihelion approach of the Helios spacecraft. This permits tests of the consistency of radio propagation and direct in-situ measurements of turbulence. Such a comparison is made in the present paper. Special attention is dedicated to measuring the dependence of the normalization coefficient of the density power spectrum, on distance from the sun. Our results are consistent with the contention published several years ago by Aaron Roberts, that there is insufficient turbulence close to the sun to account for the heating and acceleration of the solar wind. In addition, an accurate determination of the relationship could aid the detection of transients in the solar wind.


This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: ( a ) heating of the outer corona by mechanical waves; ( b ) convective out-flow of gas giving rise to the solar wind; ( c ) thermal conduction; ( d ) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested.


1977 ◽  
Vol 36 ◽  
pp. 223-254 ◽  
Author(s):  
M. Kuperus ◽  
C. Chiuderi

The amount of heat required to maintain the chromosphere and corona can be found from an estimate of the losses. The two processes that transport energy from the corona into interstellar space are electromagnetic radiation and the solar wind. In the Inner corona thermal conduction constitutes the dominant means of energy loss, but convection by the solar wind gradually takes over in the outer corona.


Author(s):  
Steven R. Cranmer ◽  
Mahboubeh Asgari-Targhi ◽  
Mari Paz Miralles ◽  
John C. Raymond ◽  
Leonard Strachan ◽  
...  

Plasma in the Sun's hot corona expands into the heliosphere as a supersonic and highly magnetized solar wind. This paper provides an overview of our current understanding of how the corona is heated and how the solar wind is accelerated. Recent models of magnetohydrodynamic turbulence have progressed to the point of successfully predicting many observed properties of this complex, multi-scale system. However, it is not clear whether the heating in open-field regions comes mainly from the dissipation of turbulent fluctuations that are launched from the solar surface, or whether the chaotic ‘magnetic carpet’ in the low corona energizes the system via magnetic reconnection. To help pin down the physics, we also review some key observational results from ultraviolet spectroscopy of the collisionless outer corona.


2021 ◽  
Author(s):  
Zdeněk Němeček ◽  
Tereza Ďurovcová ◽  
Jana Šafránková ◽  
John D. Richardson ◽  
Jiří Šimůnek ◽  
...  

<p>The solar wind non-radial velocity components observed beyond the Alfvén point are usually attributed to waves, the interaction of different streams, or other transient phenomena. However, Earth-orbiting spacecraft as well as monitors at L1 indicate systematic deviations of the wind velocity from the radial direction. Since these deviations are of the order of several degrees, the calibration of the instruments is often questioned. This paper investigates for the first time the evolution of non-radial components of the solar wind flow along the path from ≈ 0.17 to 10 AU. A comparison of observations at 1 AU with those closer to or farther from the Sun based on measurements of many spacecraft at different locations in the heliosphere (Parker Solar Probe, Helios 1 and 2, Wind, ACE, Spektr-R, ARTEMIS probes, MAVEN, Voyagers 1and 2) shows that (i) the average values of non-radial components are not zero and vary in a systematic manner with the distance from the Sun, (ii) their values significantly depend on the solar wind radial velocity, (iii) the deviation from radial direction well correlates with the cross-helicity, and (iv) the values of non-radial components peaks at 0.25 AU and gradually decreases toward zero in the outer heliosphere. Our results suggest that the difference in the propagation direction between the faster and slower winds is already established in the solar corona and is connected with the forces emitting solar wind plasma from the coronal magnetic field. The correlation with cross-helicity probably points to outward propagating Alfven waves generated in outer corona as the most probable source of observed deviations.</p>


Sign in / Sign up

Export Citation Format

Share Document