Mechanisms of Heating and Heat Transfer in the Outer Solar Atmosphere

1977 ◽  
Vol 36 ◽  
pp. 223-254 ◽  
Author(s):  
M. Kuperus ◽  
C. Chiuderi

The amount of heat required to maintain the chromosphere and corona can be found from an estimate of the losses. The two processes that transport energy from the corona into interstellar space are electromagnetic radiation and the solar wind. In the Inner corona thermal conduction constitutes the dominant means of energy loss, but convection by the solar wind gradually takes over in the outer corona.

This paper reviews theoretical models for the solar corona based on energy and pressure calculations. Processes included in these calculations are: ( a ) heating of the outer corona by mechanical waves; ( b ) convective out-flow of gas giving rise to the solar wind; ( c ) thermal conduction; ( d ) radiated power loss. Possible observations to help answer some of the outstanding questions about the energy balance are suggested.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Lingyun Zhang ◽  
Yupeng Hu ◽  
Minghai Li

This study examines the combined heat transfer by thermal conduction, natural convection and surface radiation in the porous char layer that is formed from the intumescent coating under fire. The results show that some factors, such as the Rayleigh number, conductivity ratio, emissivity, radiation–conduction number, void fraction and heating mode have a certain effect on the total heat transfer. In addition, the natural convection of the air in the cavity always inhibits surface radiation among the solid walls and thermal conduction, and the character of the total heat transfer is the competition result of the three heat transfer mechanisms.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yong Xiao ◽  
Jianchun Guo ◽  
Hehua Wang ◽  
Lize Lu ◽  
John McLennan ◽  
...  

A coupled thermal-hydraulic-mechanical (THM) model is developed to simulate the combined effect of fracture fluid flow, heat transfer from the matrix to injected fluid, and shearing dilation behaviors in a coupled fracture-matrix hot volcanic reservoir system. Fluid flows in the fracture are calculated based on the cubic law. Heat transfer within the fracture involved is thermal conduction, thermal advection, and thermal dispersion; within the reservoir matrix, thermal conduction is the only mode of heat transfer. In view of the expansion of the fracture network, deformation and thermal-induced stress model are added to the matrix node’s in situ stress environment in each time step to analyze the stability of the matrix. A series of results from the coupled THM model, induced stress, and matrix stability indicate that thermal-induced aperture plays a dominant role near the injection well to enhance the conductivity of the fracture. Away from the injection well, the conductivity of the fracture is contributed by shear dilation. The induced stress has the maximum value at the injection point; the deformation-induced stress has large value with smaller affected range; on the contrary, thermal-induced stress has small value with larger affected range. Matrix stability simulation results indicate that the stability of the matrix nodes may be destroyed; this mechanism is helpful to create complex fracture networks.


2005 ◽  
Author(s):  
S. R. Javadinejhad

Amount of heat transfer is the primary concern in a heat exchanger design. The amount of energy that has been destroyed during the heat exchange process has been investigated by introducing a new dimensionless number. Analyises of simpler systems are often useful to understand more important features of complex pattern forming processes in various field of science and technology. The entropy generation have been studied by use of new dimensionless number . This number defined as the ratio of total energy loss to total heat transfer across the duct length. The temperature dependence on the viscosity is taken into consideration and results have been derived for various L/D ratio, nozzle angles and inlet temperature.


2019 ◽  
Vol 11 (1) ◽  
pp. 153-156
Author(s):  
István Padrah ◽  
Judit Pásztor ◽  
Rudolf Farmos

Abstract Thermal conduction is a heat transfer mechanism. It is present in our everyday lives. Studying thermal conductivity helps us better understand the phenomenon of heat conduction. The goal of this paper is to measure the thermal conductivity of various materials and compare results with the values provided by the manufacturers. To achieve this we assembled a measuring instrument and performed measurements on heat insulating materials.


2015 ◽  
Vol 114 (24) ◽  
Author(s):  
K. Horaites ◽  
S. Boldyrev ◽  
S. I. Krasheninnikov ◽  
C. Salem ◽  
S. D. Bale ◽  
...  

Author(s):  
Joanna D. Haigh ◽  
Peter Cargill

This chapter discusses how there are four general factors that contribute to the Sun's potential role in variations in the Earth's climate. First, the fusion processes in the solar core determine the solar luminosity and hence the base level of radiation impinging on the Earth. Second, the presence of the solar magnetic field leads to radiation at ultraviolet (UV), extreme ultraviolet (EUV), and X-ray wavelengths which can affect certain layers of the atmosphere. Third, the variability of the magnetic field over a 22-year cycle leads to significant changes in the radiative output at some wavelengths. Finally, the interplanetary manifestation of the outer solar atmosphere (the solar wind) interacts with the terrestrial magnetic field, leading to effects commonly called space weather.


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1212 ◽  
Author(s):  
Bo Li ◽  
Wen-Na Wei ◽  
Qing-Cui Wan ◽  
Kang Peng ◽  
Ling-Ling Chen

The purpose of this study is to analyze the dynamic properties of gas hydrate development from a large hydrate simulator through numerical simulation. A mathematical model of heat transfer and entropy production of methane hydrate dissociation by depressurization has been established, and the change behaviors of various heat flows and entropy generations have been evaluated. Simulation results show that most of the heat supplied from outside is assimilated by methane hydrate. The energy loss caused by the fluid production is insignificant in comparison to the heat assimilation of the hydrate reservoir. The entropy generation of gas hydrate can be considered as the entropy flow from the ambient environment to the hydrate particles, and it is favorable from the perspective of efficient hydrate exploitation. On the contrary, the undesirable entropy generations of water, gas and quartz sand are induced by the irreversible heat conduction and thermal convection under notable temperature gradient in the deposit. Although lower production pressure will lead to larger entropy production of the whole system, the irreversible energy loss is always extremely limited when compared with the amount of thermal energy utilized by methane hydrate. The production pressure should be set as low as possible for the purpose of enhancing exploitation efficiency, as the entropy production rate is not sensitive to the energy recovery rate under depressurization.


Sign in / Sign up

Export Citation Format

Share Document