scholarly journals High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z=2.37

Author(s):  
E. Vanzella ◽  
M. Castellano ◽  
P. Bergamini ◽  
M. Meneghetti ◽  
A. Zanella ◽  
...  
2002 ◽  
Vol 207 ◽  
pp. 439-444
Author(s):  
Yu Zhi-yao

In this paper we study the relationship between the star formation efficiency and luminosity of Hα emission, Lyman continuum radiation, and Hβ emission on 35 giant extragalactic HII regions in seven galaxies. Using the observational results we obtain the relationship, and find that the star formation efficiency is correlation with Halpha luminocity, and Lyman continuum luminosity, and Hβ lumonosity, respectively. Key words: external galaxy—giant HII region—star cluster


2019 ◽  
Vol 14 (S351) ◽  
pp. 143-146
Author(s):  
Zara Randriamanakoto ◽  
Petri Väisänen

AbstractBecause of their young ages and compact densities, young massive star clusters (YMCs) are widely considered as potential proto-globular clusters. They are ubiquitous in environments with ongoing star formation activity such as interacting luminous infrared galaxies. To determine the galactic environmental effects on the star cluster formation and evolution, we study the YMC population of Arp 299 (NGC 3690E/NGC 3690W) using data taken with the HST WFC3/UVIS camera. By fitting the multiband photometry with the Yggdrasil models, we derive the star cluster masses, ages and extinction. While the cluster mass-galactocentric radius relation of NGC 3690E indicates that there could be an influence of the gas density distribution on the cluster formation, the age distribution of the western component suggests that YMCs in that galaxy endure stronger disruption mechanisms. With a cluster formation efficiency of 19 percent, star formation happening in bound clusters in Arp 299 is 3–5 times higher than that of a typical normal spiral.


2012 ◽  
Vol 751 (2) ◽  
pp. 100 ◽  
Author(s):  
David O. Cook ◽  
Anil C. Seth ◽  
Daniel A. Dale ◽  
L. Clifton Johnson ◽  
Daniel R. Weisz ◽  
...  

2016 ◽  
Vol 827 (1) ◽  
pp. 33 ◽  
Author(s):  
L. Clifton Johnson ◽  
Anil C. Seth ◽  
Julianne J. Dalcanton ◽  
Lori C. Beerman ◽  
Morgan Fouesneau ◽  
...  

2020 ◽  
Vol 493 (3) ◽  
pp. 4315-4332 ◽  
Author(s):  
Xiangcheng Ma ◽  
Michael Y Grudić ◽  
Eliot Quataert ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
...  

ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.


2009 ◽  
Vol 5 (S266) ◽  
pp. 29-34
Author(s):  
Matthew R. Bate

AbstractI review the progress made in understanding the physics and modes of star cluster formation through the use of direct self-gravitating hydrodynamical simulations, including those that have recently been performed incorporating radiative transfer and magnetic fields.


2006 ◽  
Vol 132 (6) ◽  
pp. 2539-2555 ◽  
Author(s):  
Anil C. Seth ◽  
Julianne J. Dalcanton ◽  
Paul W. Hodge ◽  
Victor P. Debattista

2010 ◽  
Vol 6 (S270) ◽  
pp. 483-486 ◽  
Author(s):  
Takayuki R. Saitoh ◽  
Hiroshi Daisaka ◽  
Eiichiro Kokubo ◽  
Junichiro Makino ◽  
Takashi Okamoto ◽  
...  

AbstractWe studied the formation process of star clusters using high-resolutionN-body/smoothed particle hydrodynamics simulations of colliding galaxies. The total number of particles is 1.2×108for our high resolution run. The gravitational softening is 5 pc and we allow gas to cool down to ~10 K. During the first encounter of the collision, a giant filament consists of cold and dense gas found between the progenitors by shock compression. A vigorous starburst took place in the filament, resulting in the formation of star clusters. The mass of these star clusters ranges from 105−8M⊙. These star clusters formed hierarchically: at first small star clusters formed, and then they merged via gravity, resulting in larger star clusters.


Sign in / Sign up

Export Citation Format

Share Document