scholarly journals Current day mass loss rate for Luminous Blue Variable IRAS 18576+0341

2005 ◽  
Vol 437 (1) ◽  
pp. L1-L5 ◽  
Author(s):  
G. Umana ◽  
C. S. Buemi ◽  
C. Trigilio ◽  
P. Leto
2019 ◽  
Vol 486 (1) ◽  
pp. 725-742 ◽  
Author(s):  
D John Hillier ◽  
Gloria Koenigsberger ◽  
Yaël Nazé ◽  
Nidia Morrell ◽  
Rodolfo H Barbá ◽  
...  

Abstract The Small Magellanic Cloud multiple system HD 5980 contains a luminous blue variable (LBV) that underwent a major eruption in 1994, and whose current spectrum is that of a hydrogen-rich Wolf–Rayet (WR) star. Since the eruption, the wind mass-loss rate has been declining while wind speeds have been steadily increasing. Observations obtained in 2014 when Star A (the LBV) eclipses Star B indicate that the fitted mass-loss rate and luminosity have reached the lowest values ever determined for such spectra: $\dot{M}$  = 4.5 × 10−5$\mathrm{M}_\odot \, \hbox{yr}^{-1}$, L  = 1.7 × 106 L⊙. In addition, the radius of the LBV’s continuum-emitting region is similar to that derived from the eclipse light curves of the late 1970s. Hence, it appears to have attained a similar ‘low’ state to that of the late 1970s. While a good fit to the emission spectrum is obtained using a cmfgen model, there are discrepancies in the UV. In particular, the extent of the observed absorption profiles is ∼1000 km s−1 greater than predicted by the emission-line intensities. Further, HST UV observations obtained in 2016, when Star A is eclipsed by Star B, show unusual P Cygni profiles that are not easily explained. Surprisingly the 2016 emission-line spectrum is similar to that at the opposite eclipse obtained in 2014. The complex UV profiles are likely to arise as a consequence of the dynamics of the wind–wind collision and radiative braking, both of which will cause significant departures from spherical symmetry, and have a strong orbital phase dependence. However, other scenarios, such as intrinsically aspherical winds, cannot be ruled out.


2013 ◽  
Vol 768 (1) ◽  
pp. 47 ◽  
Author(s):  
E. O. Ofek ◽  
L. Lin ◽  
C. Kouveliotou ◽  
G. Younes ◽  
E. Göğüş ◽  
...  
Keyword(s):  

2014 ◽  
Vol 664 ◽  
pp. 199-203 ◽  
Author(s):  
Wei Guang An ◽  
Lin Jiang ◽  
Jin Hua Sun ◽  
K.M. Liew

An experimental study on downward flame spread over extruded polystyrene (XPS) foam at a high elevation is presented. The flame shape, flame height, mass loss rate and flame spread rate were measured. The influences of width and high altitude were investigated. The flame fronts are approximately horizontal. Both the intensity of flame pulsation and the average flame height increase with the rise of sample width. The flame spread rate first drops and then rises with an increase in width. The average flame height, mass loss rate and flame spread rate at the higher elevation is smaller than that at a low elevation, which demonstrates that the XPS fire risk at the higher elevation area is lower. The experimental results agree well with the theoretical analysis. This work is vital to the fire safety design of building energy conservation system.


1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.


2018 ◽  
Vol 136 ◽  
pp. 18-26 ◽  
Author(s):  
Gianluca Greco ◽  
María Videgain ◽  
Christian Di Stasi ◽  
Belén González ◽  
Joan J. Manyà

1996 ◽  
Vol 174 ◽  
pp. 357-358
Author(s):  
I. Saviane ◽  
G. Piotto ◽  
M. Capaccioli ◽  
F. Fagotto

The bimodal nature of the horizontal branch (HB) of NGC 1851 is known since Stetson (1981). In order to better understand the properties of its HB, we collected a set of data at the ESO-NTT telescope, which provides a full coverage of the cluster area. Additional archive images from the HST-WFPC camera have been used in order to study the central region. The resulting c-m diagram (CMD) for 20500 stars is presented in Fig. 1 (left). Despite its metallicity ([Fe/H]=−1.3), NGC 1851 presents a well defined blue HB tail, besides the expected red clump. The observed CMD has been compared with the synthetic ones. The bimodal HB can be reproduced assuming that there are two stellar populations in the cluster, with an age difference of ∼ 4 Gyr, hypothesis not supported by other properties of the CMD. On the other side, if we assume that the stars in NGC 1851 are 15 Gyr old (as suggested by the difference between the HB and the TO luminosities), only a bimodal mass loss can reproduce the HB morphology: only stars with higher than standard mass loss rate are able to populate the blue-HB (BHB) tail (Fig. 1,left). There are no observational evidences for a bimodal distribution of other parameters (He, CNO, etc.).


Sign in / Sign up

Export Citation Format

Share Document