scholarly journals Ring shaped 6.7 GHz methanol maser emission around a young high-mass star

2005 ◽  
Vol 442 (3) ◽  
pp. L61-L64 ◽  
Author(s):  
A. Bartkiewicz ◽  
M. Szymczak ◽  
H. J. van Langevelde
2012 ◽  
Vol 8 (S287) ◽  
pp. 171-175 ◽  
Author(s):  
Sandra Etoka ◽  
Malcolm D. Gray ◽  
Gary A. Fuller

AbstractW51 Main/South is one of the brightest and richest high-mass star-forming regions (SFR) in the complex W51. It is known to host many ultra-compact HII (UCHII) regions thought to be the site of massive young stellar objects. Maser emission from various species is also found in the region. We have performed MERLIN astrometric observations of excited-OH maser emission at 6.035 GHz and Class II methanol maser emission at 6.668 GHz towards W51 to investigate the relationship between the maser emission and the compact continuum sources in this SFR complex. Here we present the astrometric distributions of both 6.668-GHz methanol and 6.035-GHz excited-OH maser emission in the W51 Main/South region. The location of maser emission in the two lines is compared with that of previously published OH groundstate emission. The interesting coherent velocity and spatial structure observed in the methanol maser distribution as well as the relationship of the masers to infall or outflow in the region are discussed. It appears that the masers are excited by multiple objects potentially at different stages of evolution.


Author(s):  
A. Chipman ◽  
S. P. Ellingsen ◽  
A. M. Sobolev ◽  
D. M. Cragg

AbstractWe have used the Australia Telescope Compact Array to search for a number of centimetre wavelength methanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial, and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations, we are able to place an upper limit of ≲ 1300 K on the brightness temperature of any emission from the 31A+–31A−, 17−2–18−3 E (vt = 1), 124–133 A−, 124–133 A+, and 41A+–41A− transitions of methanol in these sources on angular scales of 2 arcsec. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes.


2012 ◽  
Vol 8 (S287) ◽  
pp. 190-191
Author(s):  
K. Sugiyama ◽  
K. Fujisawa ◽  
N. Shino ◽  
A. Doi

AbstractWe present the radial velocity acceleration of the 6.7 GHz methanol maser in a high-mass star-forming region Monoceros R2 (Mon R2). The methanol maser is associated with an infrared source IRS3. The methanol maser of Mon R2 shows at least three spectral features having radial velocities (Vlsr) of 10.8, 12.7, and 13.2 km s−1. The radial velocity of a feature at Vlsr = 12.7 km s−1 has changed during ten years from Aug. 1999 to Oct. 2009, corresponding to an acceleration of 0.08 km s−1 yr−1. We observed the 6.7 GHz methanol masers of Mon R2 in Oct. 2008 using the Japanese VLBI Network (JVN). Compared with the previous VLBI image obtained in Nov. 1998 using the European VLBI Network (EVN), the maser feature at Vlsr = 12.7 km s−1 showed relative proper motions of ~2.5 mas yr−1 (about 10 km s−1 at 0.83 kpc) toward the intensity peak of IRS3. The radial velocity acceleration could be caused by an inflow from a disk or envelope around a high-mass young stellar object (YSO) at IRS3.


2012 ◽  
Vol 8 (S287) ◽  
pp. 133-140
Author(s):  
S. E. Kurtz

AbstractClass I 44 GHz methanol masers are not as well-known, as common, or as bright as their more famous Class II cousins at 6.7 and 12.2 GHz. Nevertheless, the 44 GHz masers are commonly found in high-mass star forming regions. At times they appear to trace dynamically important phenomena; at other times they show no obvious link to the star formation process. Here, we summarize the major observational efforts to date, including both dedicated surveys and collateral observations. The principal results are presented, some that were expected, and others that were unexpected.


2012 ◽  
Vol 8 (S292) ◽  
pp. 39-39
Author(s):  
S. L. Breen ◽  
S. P. Ellingsen

AbstractDetermining an evolutionary clock for high-mass star formation is an important step towards realizing a unified theory of star formation, as it will enable qualitative studies of the associated high-mass stars to be executed. Our recent studies have shown that masers have great potential to accurately trace the evolution of these regions. We have investigated the relative evolutionary phases associated with the presence of combinations of water, methanol and hydroxyl masers. Comparison between the characteristics of coincident sources has revealed strong evidence for an evolutionary sequence for the different maser species, a result that we now aim to corroborate through comparisons with chemical clocks.Using our new, large samples of methanol masers at 6.7 GHz (MMB survey; Green et al. (2009)) and 12.2 GHz (Breen et al. 2012), 22 GHz water masers (Breen & Ellingsen 2012), OH masers together with complementary data, we find strong evidence that it is not only the presence or absence of the different maser species that indicates the evolutionary stage of the associated high-mass star formation region (see e.g. Breen et al. (2010)), but that the properties of those masers can give even finer evolutionary details. Most notably, the intensity and velocity range of detected maser emission increases as the star forming region evolves (Breen et al. 2011).Subsequent work we have undertaken (Ellingsen et al. 2011) has shown that the presence of rare 37.7 GHz methanol masers may signal the end of the methanol maser phase. They show that 37.7 GHz methanol masers are associated only with the most luminous 6.7 and 12.2 GHz methanol masers, which combined with the rarity of these objects is consistent with them being a short lived phase towards the end of the 6.7 GHz methanol maser lifetime.An independent confirmation of our maser evolutionary timeline can be gained through comparisons with chemical clocks. MALT90 is a legacy survey of 1000s of dense star forming cores at 90GHz, simultaneously observing 16 molecular lines with the Mopra radio telescope (see e.g. Foster et al. 2011). It provides the perfect dataset to test the maser evolutionary timeline due to the targeted lines and the fact that at least one-quarter of the MALT90 sources correspond to maser sites, providing a large enough sample for meaningful analysis. From our preliminary analysis, we find that star formation regions showing similar maser properties also show similar thermal line properties; as would be expected if our evolutionary scenario were accurate.


2006 ◽  
Vol 2 (S237) ◽  
pp. 160-164 ◽  
Author(s):  
V. Minier ◽  
N. Peretto ◽  
S. N. Longmore ◽  
M. G. Burton ◽  
R. Cesaroni ◽  
...  

AbstractWe present a multi-wavelength (NIR to radio) and multi-scale (1 AU to 10 pc) study of the S255–S257 complex of young high-mass (proto)stars. The complex consists of two evolved HII regions and a molecular gas filament in which new generations of high mass stars form. Four distinct regions are identified within this dusty filament: a young NIR/optical source cluster, a massive protostar binary, a (sub)millimetre continuum and molecular clump in global collapse and a reservoir of cold gas. Interestingly, the massive binary protostellar system is detected through methanol maser and mid-IR emission at the interface between the NIR cluster and the cold gas filament. The collapsing clump is located to the north of the NIR cluster and hosts a young high-mass star associated with an outflow that is observed in mid-IR, methanol maser and radio emission. We interpret this anatomy as the possible result of triggered star formation, starting with the formation of two HII regions, followed by the compression of a molecular gas filament in which a first generation of high-mass stars forms (the NIR cluster), which then triggers the formation of high mass protostars in its near environment (the massive protostellar binary). The global collapse of the northern clump might be due to both the expansion of the HII regions that squashes the filament. In conclusion, we witness the formation of four generations of clusters of high-mass stars in S255–S257.


2012 ◽  
Vol 64 (1) ◽  
pp. 17 ◽  
Author(s):  
Kenta Fujisawa ◽  
Koichiro Sugiyama ◽  
Nozomu Aoki ◽  
Tomoya Hirota ◽  
Nanako Mochizuki ◽  
...  

2012 ◽  
Vol 8 (S287) ◽  
pp. 146-150
Author(s):  
Karl J. E. Torstensson ◽  
Huib Jan van Langevelde ◽  
Floris F. S. van der Tak ◽  
Wouter H. T. Vlemmings ◽  
Lars E. Kristensen ◽  
...  

AbstractTo understand the origin of the CH3OH maser emission, we map the distribution and excitation of the thermal CH3OH emission in a sample of 14 relatively nearby (<6 kpc) high-mass star forming regions that are identified through 6.7 GHz maser emission. The images are velocity-resolved and allow us to study the kinematics of the regions. Further, rotation diagrams are created to derive rotation temperatures and column densities of the large scale molecular gas. The effects of optical depth and subthermal excitation are studied with population diagrams. For eight of the sources in our sample the thermal CH3OH emission is compact and confined to a region <0.4 pc and with a central peak close (<0.03 pc) to the position of the CH3OH maser emission. Four sources have more extended thermal CH3OH emission without a clear peak, and for the remaining two sources, the emission is too weak to map. The compact sources have linear velocity gradients along the semi-major axis of the emission of 0.3 – 13 kms−1 pc−1. The rotation diagram analysis shows that in general the highest rotation temperature is found close to the maser position. The confined and centrally peaked CH3OH emission in the compact sources indicates a single source for the CH3OH gas and the velocity fields show signs of outflow in all but one of the sources. The high detection rate of the torsionally excited vt = 1 line and signs of high-K lines at the maser position indicate radiative pumping, though the general lack of measurable beam dilution effects may mean that the masing gas is not sampled well and originates in a very small region.


2018 ◽  
Vol 617 ◽  
pp. A80 ◽  
Author(s):  
M. Szymczak ◽  
M. Olech ◽  
P. Wolak ◽  
E. Gérard ◽  
A. Bartkiewicz

Context. High-mass young stellar objects (HMYSOs) can undergo accretion episodes that strongly affect the star evolution, the dynamics of the disk, and its chemical evolution. Recently reported extraordinary bursts in the methanol maser emission may be the observational signature of accretion events in deeply embedded HMYSOs. Aims. We analyze the light curve of 6.7 GHz methanol masers in S255IR-NIRS3 during the 2015–2016 burst. Methods. 8.5-yr monitoring data with an average sampling interval of 5 days were obtained with the Torun 32 m radio telescope. Archival data were added, extending the time series to ~27 yr. Results. The maser emission showed moderate (25–30%) variability on timescales of months to years over ~23 yr since its discovery. The main burst was preceded by a 1 yr increase of the total flux density by a factor of 2.5, then it grew by a factor of 10 over ~0.4 yr and declined by a factor of 8 during the consecutive 2.4 yr. The peak maser luminosity was a factor of 24.5 higher than the pre-burst quiescent value. The light curves of individual features showed considerable diversity but indicated a general trend of suppression of the maser emission at blueshifted (<4.7 km s−1) velocities when the redshifted emission rapidly grew and new emission features appeared at velocities >5.8 km s−1. This new emission provided a contribution of about 80% to the maser luminosity around the peak of the burst. The duration of the burst at the extreme redshifted velocities of 7.1–8.7 km s−1 was from 0.9 to 1.9 yr, and its lower limit for the other features was ~3.9 yr. Conclusions. The onset of the maser burst exactly coincides with that of the infrared burst estimated from the motion of the light echo. This strongly supports the radiative pumping scheme of the maser transition. The growth of the maser luminosity is the result of an increasing volume of gas where the maser inversion is achieved.


Sign in / Sign up

Export Citation Format

Share Document