scholarly journals Optical and near-infrared simultaneous observations of the BL Lacs PKS 2005-489 and PKS 2155-304

2006 ◽  
Vol 460 (3) ◽  
pp. 665-672 ◽  
Author(s):  
T. P. Dominici ◽  
Z. Abraham ◽  
A. L. Galo
Keyword(s):  
2020 ◽  
Vol 498 (3) ◽  
pp. 3578-3591
Author(s):  
P Z Safna ◽  
C S Stalin ◽  
Suvendu Rakshit ◽  
Blesson Mathew

ABSTRACT We present long-term optical and near-infrared flux variability analysis of 37 blazars detected in the γ-ray band by the Fermi Gamma-Ray Space Telescope. Among them, 30 are flat spectrum radio quasars (FSRQs) and 7 are BL Lac objects (BL Lacs). The photometric data in the optical (BVR) and infrared (JK) bands were from the Small and Moderate Aperture Research Telescope System acquired between 2008–2018. From cross-correlation analysis of the light curves at different wavelengths, we did not find significant time delays between variations at different wavelengths, except for three sources, namely PKS 1144–379, PKS B1424–418, and 3C 273. For the blazars with both B- and J-band data, we found that in a majority of FSRQs and BL Lacs, the amplitude of variability (σm) in the J band is larger than that in B band, consistent with the dominance of the non-thermal jet over the thermal accretion disc component. Considering FSRQs and BL Lacs as a sample, there are indications of σm to increase gradually towards longer wavelengths in both, however, found to be statistically significant only between B and J bands in FSRQs. In the B−J v/s J-colour magnitude diagram, we noticed complicated spectral variability patterns. Most of the objects showed a redder when brighter (RWB) behaviour. Few objects showed a bluer when brighter (BWB) trend, while in some objects both BWB and RWB behaviours were noticed. These results on flux and colour characteristics indicate that the jet emission of FSRQs and BL Lacs is indistinguishable.


2019 ◽  
Vol 15 (S356) ◽  
pp. 372-372
Author(s):  
Susan Ridgway

AbstractBright quasars at low z have generally been found in massive, evolved host galaxies, consistent with formation at early epochs. However, deep, high resolution, multicolor imaging of some quasar hosts have found morphological evidence of tidal tails and colors indicative of active star formation. These results are consistent with theories of galaxy formation and evolution in which merger processes trigger the activation of the quasar phase, and energetic feedback is essential. Understanding the role the black hole population plays in the galaxy formation process is important, but imaging the host galaxies around bright quasars is difficult because of the contribution of the bright nuclei. Very high resolution, deep imaging is necessary to successfully remove the nuclear component. We made high-resolution near-infrared images of several bright z ˜ 0.3 BL Lacs with the Gemini Multi-Conjugate Adaptive Optics System (GeMS)/GSAOI in order to study their host galaxies. We will present the results of this imaging with the 1 arcmin AO-corrected field provided by GeMS/GSAOI and compare with available HST imaging available in the archive.


2021 ◽  
Author(s):  
Ekaterina Koptelova ◽  
Chorng-Yuan Hwang

Abstract BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs), known as blazars, are low- and high-luminosity radio-loud Active Galactic Nuclei (AGNs) with relativistic jets pointed towards Earth (1). Evolving from FSRQs (2,3), BL Lac objects host ~109 Msun supermassive black holes (SMBHs, where Msun is the mass of the Sun) and reside preferentially in giant elliptical galaxies of stellar masses 1011-1012Msun (4-7). The known BL Lacs are relatively nearby objects found below redshift 3.6 (3,8,9). Here, we report the discovery of a BL Lac object, FIRST J233153.20+112952.11 (hereafter J2331+11), at a redshift of 6.57 corresponding to an age of the Universe of ~800 Myr. As the typical BL Lac, J2331+11 is a compact radio source with the flat power-law radio continuum, no emission lines in its near-infrared spectrum, and significant variability. The optical-to-radio continuum of J2331+11 is entirely dominated by the synchrotron emission of a relativistic jet. J2331+11 provides evidence for the shorter formation timescale of massive SMBHs with jets and bulge-dominated galaxies than that expected from the Eddington-limited growth of SMBHs and hierarchical galaxy formation. The rapid formation of BL Lacs at early cosmic epochs should have taken place in the densest regions of the early Universe.


Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7875-7887 ◽  
Author(s):  
Ying Lan ◽  
Xiaohui Zhu ◽  
Ming Tang ◽  
Yihan Wu ◽  
Jing Zhang ◽  
...  

A near-infrared (NIR) activated theranostic nanoplatform based on upconversion nanoparticles (UCNPs) is developed in order to overcome the hypoxia-associated resistance in photodynamic therapy by photo-release of NO upon NIR illumination.


2020 ◽  
Vol 56 (43) ◽  
pp. 5819-5822
Author(s):  
Jing Zheng ◽  
Yongzhuo Liu ◽  
Fengling Song ◽  
Long Jiao ◽  
Yingnan Wu ◽  
...  

In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document