scholarly journals Tone detection thresholds in interaurally delayed noise of different bandwidths

Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 60
Author(s):  
Mathias Dietz ◽  
Jörg Encke ◽  
Kristin I Bracklo ◽  
Stephan D Ewert

Differences between the interaural phase of a noise and a target tone improve detection thresholds. The maximum masking release is obtained for detecting an antiphasic tone (Sπ) in diotic noise (N0). It has been shown in several studies that this benefit gradually declines as an interaural time delay (ITD) is applied to the noise. This decline has been attributed to the reduced interaural coherence of the noise. Here, we report detection thresholds for a 500 Hz tone in masking noise with ITDs up to 8 ms and bandwidths from 25 to 1000 Hz. Reducing the noise bandwidth from 100 to 50 and 25 Hz increased the masking release for 8-ms ITD, as expected for increasing temporal coherence with decreasing bandwidth. For bandwidths of 100–1000 Hz no significant difference in masking release was observed. Detection thresholds with these wider-band noises had an ITD dependence that is fully described by the temporal coherence imposed by the typical monaurally determined auditory-filter bandwidth. A binaural model based on interaural phase-difference fluctuations accounts for the data without using delay lines.

2021 ◽  
Author(s):  
Hyojin Kim ◽  
Viktorija Ratkute ◽  
Bastian Epp

Comodulated masking noise and binaural cues can facilitate detecting a target sound from noise. These cues can induce a decrease in detection thresholds, quantified as comodulation masking release (CMR) and binaural masking level difference (BMLD), respectively. However, their relevance to speech perception is unclear as most studies have used artificial stimuli different from speech. Here, we investigated their ecological validity using sounds with speech-like spectro-temporal dynamics. We evaluated the ecological validity of such grouping effect with stimuli reflecting formant changes in speech. We set three masker bands at formant frequencies F1, F2, and F3 based on CV combination: /gu/, /fu/, and /pu/. We found that the CMR was little (< 3 dB) while BMLD was comparable to previous findings (~ 9 dB). In conclusion, we suggest that other features may play a role in facilitating frequency grouping by comodulation such as the spectral proximity and the number of masker bands.


2021 ◽  
Author(s):  
Hyojin Kim ◽  
Viktorija Ratkute ◽  
Bastian Epp

When a target tone is preceded by a noise, the threshold for target detection can be increased or decreased depending on the type of a preceding masker. The effect of preceding masker to the following sound can be interpreted as either the result of adaptation at the periphery or at the system level. To disentangle these, we investigated the time constant of adaptation by varying the length of the preceding masker. For inducing various masking conditions, we designed stimuli that can induce masking release. Comodulated masking noise and binaural cues can facilitate detecting a target sound from noise. These cues induce a decrease in detection thresholds, quantified as comodulation masking release (CMR) and binaural masking level difference (BMLD), respectively. We hypothesized that if the adaptation results from the top-down processing, both CMR and BMLD will be affected with increased length of the preceding masker. We measured CMR and BMLD when the length of preceding maskers varied from 0 (no preceding masker) to 500 ms. Results showed that CMR was more affected with longer preceding masker from 100 ms to 500 ms while the preceding masker did not affect BMLD. In this study, we suggest that the adaptation to preceding masking sound may arise from low level (e.g. cochlear nucleus, CN) rather than the temporal integration by the higher-level processing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Junhan Wei ◽  
Deying Kong ◽  
Xi Yu ◽  
Lili Wei ◽  
Yue Xiong ◽  
...  

PurposeThe current study was to investigate whether myopia affected peripheral motion detection and whether the potential effect interacted with spatial frequency, motion speed, or eccentricity.MethodsSeventeen young adults aged 22–26 years participated in the study. They were six low to medium myopes [spherical equivalent refractions −1.0 to −5.0 D (diopter)], five high myopes (&lt;-5.5 D) and six emmetropes (+0.5 to −0.5 D). All myopes were corrected by self-prepared, habitual soft contact lenses. A four-alternative forced-choice task in which the subject was to determine the location of the phase-shifting Gabor from the four quadrants (superior, inferior, nasal, and temporal) of the visual field, was employed. The experiment was blocked by eccentricity (20° and 27°), spatial frequency (0.6, 1.2, 2.4, and 4.0 cycles per degree (c/d) for 20° eccentricity, and 0.6, 1.2, 2.0, and 3.2 c/d for 27° eccentricity), as well as the motion speed [2 and 6 degree per second (d/s)].ResultsMixed-model analysis of variances showed no significant difference in the thresholds of peripheral motion detection between three refractive groups at either 20° (F[2,14] = 0.145, p = 0.866) or 27° (F[2,14] = 0.475, p = 0.632). At 20°, lower motion detection thresholds were associated with higher myopia (p &lt; 0.05) mostly for low spatial frequency and high-speed targets in the nasal and superior quadrants, and for high spatial frequency and high-speed targets in the temporal quadrant in myopic viewers. Whereas at 27°, no significant correlation was found between the spherical equivalent and the peripheral motion detection threshold under all conditions (all p &gt; 0.1). Spatial frequency, speed, and quadrant of the visual field all showed significant effect on the peripheral motion detection threshold.ConclusionThere was no significant difference between the three refractive groups in peripheral motion detection. However, lower motion detection thresholds were associated with higher myopia, mostly for low spatial frequency targets, at 20° in myopic viewers.


1989 ◽  
Vol 69 (3-2) ◽  
pp. 1127-1130 ◽  
Author(s):  
William F. Vitulli ◽  
Connie P. Anderson

This exploratory investigation concerned the effects of both auditory and visual stimulus variations on the accuracy of mental solutions to addition problems presented on a computer screen (CRT). 5 intensities of background noise and 5 background hues were presented randomly to 123 undergraduate volunteers as they mentally summed 25 numerals ranging from 1 to 5 at rates of either 1 sec. or 3 sec. per numeral timed from the onset of the previous numeral. A 2 × 2 × 5 mixed split-plot factorial analysis of variance gave a significant difference in errors between rates of digit presentation with greater accuracy associated with the 3-sec. rate. There was no significant difference in mean errors for auditory vs color modalities, yet a post hoc Newman-Keuls paired-comparison test of decibel levels at the 1-sec. rate of digit presentation gave a significant difference in mean errors between 60-dB and 70-dB sound-pressure levels (SPLs) of white masking noise. Also, a post hoc F test on differences between successive stages indicated significant differences suggesting a “learning set.” Comparisons between ‘everyday’ instances of these noise levels are made with implications for optimal computational environments.


1972 ◽  
Vol 15 (4) ◽  
pp. 771-780 ◽  
Author(s):  
Courtney Stromsta

Stutterers and nonstutterers cancelled the auditory sensation evoked by bone-conducted sinusoidal signals. They accomplished this by appropriate phase and amplitude adjustments of simultaneously presented bilateral air-conducted signals of the same frequency. Criterion measures of interaural phase difference at the point of cancellation were obtained for seven frequencies. The mean interaural phase differences obtained by stutterers were consistently greater than those of the nonstutterers. Based on time-equivalent values of the mean interaural phase differences, the values for stutterers were approximately twice as great as for nonstutterers at 150, 300, and 1200 Hz. The mean interaural phase difference found to exist for stutterers at 150 Hz approximates the magnitude of phase shift of normally delayed air-conducted auditory feedback of speech sounds that serves to induce experimental blockage of phonation. This relationship, in view of other findings, offers credence to the idea that disturbance of laryngeal function effected by an anomalous audition-phonation control system could be a causative agent in stuttering.


2002 ◽  
Vol 14 (5) ◽  
pp. 479-489 ◽  
Author(s):  
Kazuhiro Nakadai ◽  
◽  
Ken-ichi Hidai ◽  
Hiroshi G. Okuno ◽  
Hiroshi Mizoguchi ◽  
...  

This paper addresses real-time multiple speaker tracking because it is essential in robot perception and human-robot social interaction. The difficulty lies in treating a mixture of sounds, occlusion (some speakers are hidden) and real-time processing. Our approach consists of three components: (1) the extraction of the direction of each speaker by using interaural phase difference and interaural intensity difference, (2) the resolution of each speakers direction by multimodal integration of audition, vision and motion with canceling inevitable motor noises in motion in case of an unseen or silent speaker, and (3) the distributed implementation to three PCs connected by TCP/IP network to attain real-time processing. As a result, we attain robust real-time speaker tracking with 200 ms delay in a non-anechoic room, even when multiple speakers exist and the tracking person is visually occluded. In addition, the feasibility of social interaction is shown through application of our technique to a receptionist robot and a companion robot at a party.


Sign in / Sign up

Export Citation Format

Share Document