scholarly journals New insights on the Late Paleocene-Early Eocene Dinoflagellate cyst zonation for the Paris and Dieppe Basins

Author(s):  
Alina I. Iakovleva ◽  
Florence Quesnel ◽  
Christian Dupuis

The Anglo-Belgo-Paris Basin, historical cradle of the Paleogene stratigraphy since the XVIIIth century, is known by the presence of very specific so-called “Sparnacian” deposits (very diverse and laterally highly variable, predominantly lagoonal to terrestrial facies), which encompass the short stratigraphic interval of the Paleocene-Eocene Thermal Maximum (PETM). Due to the insufficient paleontological record, the “Sparnacian” succession of the Paris and Dieppe-Hampshire Basins still needs a robust chronostratigraphic correlation with other Paleogene records worldwide. In order to refine the stratigraphy of the Thanetian-Lower Ypresian succession in northern France a number of cores and outcrop sections have been investigated palynologically. As a result, an updated version of the Dinoflagellate cyst zonation for the Paris and Dieppe Basins is proposed and contains six new or revised Biozones for this stratigraphical interval: Alisocysta margarita, Apectodinium hyperacanthum, Apectodinium-extreme acme, Biconidinium longissimum-acme, Dracodinium astra, and Axiodinium lunare/Stenodinium meckelfeldense. Based on combined bio-, litho- and chemostratigraphic data, it appears that the dinocyst assemblages, corresponding to the PETM event interval (“Sparnacian” deposits, Soissonnais and upper Mortemer Formations with the most negative 13δCorg values between -27 and -32 ‰ PDB), are characterized by an extreme acme of Apectodinium spp. (70-98%) in both basins, sometimes alternating with an extreme acme of a few gonyaulacoid groups in the Dieppe Basin. Dinocyst assemblages from the PETM interval contain a significant number of atypical, longer specimens of Apectodinium parvum, which could represent an ecological onshore substitute of species Axiodinium augustum in the Paris and Dieppe-Hampshire Basins. The establishment of a new Biconidinium longissimum-acme Zone suggests the absence of an important stratigraphical hiatus previously inferred for the Paris Basin.

1995 ◽  
Vol 14 (2) ◽  
pp. 97-105 ◽  
Author(s):  
Bruce A. Tocher ◽  
Ian Jarvis

Abstract. The dinoflagellate cyst distributions and stratigraphies of two representative Cenomanian/Turonian (C/T) boundary sections from the Maine and Normandy regions of northern France are described. Siliciclastic-rich sediments which characterize the Upper Cenomanian in Maine, contrast with the coeval nodular chalk and hardground lithofacies of Normandy. Both areas display a transition to marly chalks in the Lower Turonian. Dinocyst assemblages are characterized by low diversities (38 taxa) and low overall abundances, and relatively few stratigraphically significant species. The continued occurrence of Epelidosphaeridia spinosa (Cookson & Hughes) Davey in the Upper Cenomanian of Maine is noted. Results are compared and contrasted with those from coeval sections elsewhere in the Anglo-Paris Basin. A major decline in cyst abundance and diversity is typical of the C/T boundary interval, which is characterized by a dominance of tolerant cosmopolitan forms such as Circulodinium distinctum (Deflandre & Cookson) Jansonius, Hystrichosphaeridium bowerbankii Davey & Williams, Oligosphaeridium complex (White) Davey & Williams, Odontochitina costata Alberti; emend. Clarke & Verdier and O. operculata (O. Wetzel) Deflandre & Cookson.


2020 ◽  
Vol 16 (6) ◽  
pp. 2381-2400 ◽  
Author(s):  
Appy Sluijs ◽  
Joost Frieling ◽  
Gordon N. Inglis ◽  
Klaas G. J. Nierop ◽  
Francien Peterse ◽  
...  

Abstract. A series of papers published shortly after the Integrated Ocean Drilling Program Arctic Coring Expedition (ACEX, 2004) on Lomonosov Ridge indicated remarkably high early Eocene sea surface temperatures (SSTs; ca. 23 to 27 ∘C) and land air temperatures (ca. 17 to 25 ∘C) based on the distribution of isoprenoid and branched glycerol dialkyl glycerol tetraether (isoGDGT and brGDGT) lipids, respectively. Here, we revisit these results using recent analytical developments – which have led to improved temperature calibrations and the discovery of new temperature-sensitive glycerol monoalkyl glycerol tetraethers (GMGTs) – and currently available proxy constraints. The isoGDGT assemblages support temperature as the dominant variable controlling TEX86 values for most samples. However, contributions of isoGDGTs from land, which we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene and part of the interval between the Paleocene–Eocene Thermal Maximum (PETM; ∼ 56 Ma) and the Eocene Thermal Maximum 2 (ETM2; ∼ 54 Ma). Background early Eocene SSTs generally exceeded 20 ∘C, with peak warmth during the PETM (∼ 26 ∘C) and ETM2 (∼ 27 ∘C). We find abundant branched GMGTs, likely dominantly marine in origin, and their distribution responds to environmental change. Further modern work is required to test to what extent temperature and other environmental factors determine their distribution. Published Arctic vegetation reconstructions indicate coldest-month mean continental air temperatures of 6–13 ∘C, which reinforces the question of whether TEX86-derived SSTs in the Paleogene Arctic are skewed towards the summer season. The exact meaning of TEX86 in the Paleogene Arctic thus remains a fundamental issue, and it is one that limits our assessment of the performance of fully coupled climate models under greenhouse conditions.


2020 ◽  
Author(s):  
Appy Sluijs ◽  
Joost Frieling ◽  
Gordon N. Inglis ◽  
Klaas G. J. Nierop ◽  
Francien Peterse ◽  
...  

Abstract. The Integrated Ocean Drilling Program Arctic Coring Expedition on Lomonosov Ridge, Arctic Ocean (IODP Expedition 302 in 2004) delivered the first Arctic Ocean sea surface temperature (SST) and land air temperature (LAT) records spanning the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma) to Eocene Thermal Maximum 2 (ETM2; ~54 Ma). The distribution of glycerol dialkyl glycerol tetraether (GDGT) lipids indicated elevated SST (ca. 23 to 27 °C) and LATs (ca. 17 to 25 °C). However, recent analytical developments have led to: (i) improved temperature calibrations and (ii) the discovery of new temperature-sensitive glycerol monoalkyl glycerol tetraethers (GMGTs). Here, we have analyzed GDGT and GMGT distributions in the same sediment samples using new analytical procedures, interpret the results following the currently available proxy constraints and assess the fidelity of new temperature estimates in our study site. The influence of several confounding factors on TEX86 SST estimates, such as variations in export depth and input from exogenous sources, are typically negligible. However, contributions of isoGDGTs from land, which we characterize in detail, complicate TEX86 paleothermometry in the late Paleocene and part of the interval between the PETM and ETM2. The isoGDGT distribution further supports temperature as the likely variable controlling TEX86 values and we conclude that background early Eocene SSTs generally exceeding 20 °C, with peak warmth during the PETM (~26 °C) and ETM2 (~27 °C). We also report high abundances of branched glycerol monoalkyl glycerol tetraethers throughout (branched GMGTs), most likely dominantly marine in origin, and show that their distribution is sensitive to environmental parameters. Further analytical, provenance and environmental work is required to test if and to what extent temperature may be an important factor. Published temperature constraints from branched GDGTs and terrestrial vegetation also support remarkable warmth in the study section and elsewhere in the Arctic basin, with vegetation proxies indicating coldest month mean temperatures of 6–13 °C. If TEX86-derived SSTs truly represent mean annual SSTs, the seasonal range of Arctic SST was in the order of 20 °C, higher than any open marine locality in the modern ocean. If SST estimates are skewed towards the summer season, seasonal ranges were comparable to those simulated in future ice-free Arctic Ocean scenarios. This uncertainty remains a fundamental issue, and one that limits our assessment of the performance of fully-coupled climate models under greenhouse conditions.


Geology ◽  
2000 ◽  
Vol 28 (10) ◽  
pp. 927-930 ◽  
Author(s):  
U. Röhl ◽  
T.J. Bralower ◽  
R.D. Norris ◽  
G. Wefer

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jussi Hovikoski ◽  
Michael B. W. Fyhn ◽  
Henrik Nøhr-Hansen ◽  
John R. Hopper ◽  
Steven Andrews ◽  
...  

AbstractThe paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene.


Sign in / Sign up

Export Citation Format

Share Document