# Boundary stabilization and disturbance rejection for an unstable time fractional diffusion-wave equation

Author(s):
Hua-Cheng Zhou ◽
Ze-Hao Wu ◽
Bao-Zhu Guo ◽
Yangquan Chen
Keyword(s):

In this paper, we study boundary stabilization and disturbance rejection problem for an unstable time fractional diffusion-wave equation with Caputo time fractional derivative. For the case of no boundary external disturbance, both state feedback control and output feedback control via Neumann boundary actuation are proposed by the classical backstepping method. It is proved that the state feedback makes the closed-loop system Mittag-Leffler stable and the output feedback makes the closed-loop system asymptotically stable. When there is boundary external disturbance, we propose a disturbance estimator constructed by two infinite dimensional auxiliary systems to recover the external disturbance. A novel control law is then designed to compensate for the external disturbance in real time, and rigorous mathematical proofs are presented to show that the resulting closed-loop system is Mittag-Leffler stable and the states of all subsystems involved are uniformly bounded. As a result, we completely resolve, from a theoretical perspective, two long-standing unsolved mathematical control problems raised in [Nonlinear Dynam., 38(2004), 339-354] where all results were verified by simulations only.

2021 ◽
Vol 9 (8) ◽
pp. 834
Author(s):
Qing-Qing Hu ◽
Feng-Fei Jin ◽
Bao-Qiang Yan
Keyword(s):

In this paper, we consider boundary stabilization problem of heat equation with multi-point heat source. Firstly, a state feedback controller is designed mainly by backstepping approach. Under the designed state controller, the exponential stability of closed-loop system is guaranteed. Then, an observer-based output feedback controller is proposed. We prove the exponential stability of resulting closed-loop system using operator semigroup theory. Finally, the designed state and output feedback controllers are effective via some numerical simulations.

2018 ◽
Vol 141 (2) ◽
Author(s):
Mounir Hammouche ◽
Philippe Lutz ◽
Micky Rakotondrabe
Keyword(s):

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.

2011 ◽
Vol 314-316 ◽
pp. 374-379
Author(s):
Hong Yun Wei ◽
Zhong Xun Zhu ◽
Yue Gang Tao ◽
Wen De Chen
Keyword(s):

This paper investigates the output feedback cycle time assignability of the min-max systems which are more complex than the systems studied in recent years. Max-plus projection representation for the closed-loop system with min-max output feedback is introduced. The coloring graph is presented and applied to analyze the structure of systems effectively. The necessary and sufficient criterion for the output feedback cycle time assignability is established which is an extension of the results studied before. The methods are constructive in nature.

2014 ◽
Vol 945-949 ◽
pp. 2539-2542
Author(s):
Hong Yang ◽
Huan Huan Lü ◽
Le Zhang
Keyword(s):

For the non-measurable states, a control of switched fuzzy systems is presented based on observer. Using switching technique and multiple Lyapunov function method, the fuzzy observer is built to ensure that for all allowable external disturbance the relevant closed-loop system is asymptotically stable. Moreover, switching strategy achieving system global asymptotic stability of the switched fuzzy system is given. In this model, a switching state feedback controller is presented. A simulation shows the feasibility and the effectiveness of the method.

Author(s):
Jinsong Liang ◽
Yangquan Chen ◽
R. Fullmer
Keyword(s):

2019 ◽
Vol 20 (1) ◽
pp. 3-15 ◽
Author(s):
I. B. Furtat ◽
P. A. Gushchin ◽
A. A. Peregudin
Keyword(s):

The output feedback algorithm for dynamic plants with compensation of parametric uncertainty, external disturbances and measurement noises is synthesized. The plants are described by a nonlinear system of differential equations with vector input and output signals. Unlike most existing control schemes in this paper the dimensions of the measurement interference and the output signal are equal, the sources of the signals of disturbances and disturbances are different, parametric and external disturbances can be present in any equation of the plant model. For simultaneous compensation of disturbances and measurement noises it is proposed to consider two channels. On the first channel a part of the measurement noises will be estimated which will allow partial recovery the information about the plant noisy output. On the second channel the disturbances will be compensated. Thus, at least two independent measurement channels are required for simultaneous compensation of disturbances and measurement noises. Sufficient conditions for calculating the parameters of the algorithm in the form of solvability of the linear matrix inequality are obtained. It is shown that the equation of a closed-loop system obtained on the basis of the proposed algorithm depends on the disturbances and the smallest component of the measurement noise. However, if the smallest component cannot be identified a priory, the results of the transients depend on the component of the noise that will be selected in the synthesis of the control system. Thus, unlike most existing control schemes, where the equation of a closed-loop system depends on disturbance and noise, the resulting algorithm provides better transients, because they do not depend on the entire noise vector, but only on its smallest (one) component. The simulations for a third-order nonlinear plant and the synchronization of an electrical generator connected to the power grid are presented. Numerical examples illustrate the effectiveness of the proposed scheme and the robustness with respect to random components in the noises and disturbances.

2016 ◽
Vol 26 (2) ◽
pp. 285-295 ◽
Author(s):
Lan Zhou ◽
Jinhua She ◽
Chaoyi Li ◽
Changzhong Pan
Keyword(s):

Abstract This paper concerns the problem of designing an EID-based robust output-feedback modified repetitive-control system (ROFMRCS) that provides satisfactory aperiodic-disturbance rejection performance for a class of plants with time-varying structured uncertainties. An equivalent-input-disturbance (EID) estimator is added to the ROFMRCS that estimates the influences of all types of disturbances and compensates them. A continuous-discrete two-dimensional model is built to describe the EID-based ROFMRCS that accurately presents the features of repetitive control, thereby enabling the control and learning actions to be preferentially adjusted. A robust stability condition for the closed-loop system is given in terms of a linear matrix inequality. It yields the parameters of the repetitive controller, the output-feedback controller, and the EID-estimator. Finally, a numerical example demonstrates the validity of the method.

2018 ◽
Vol 2018 ◽
pp. 1-10
Author(s):
Yang Wang ◽
Jinna Li ◽
Xiaolei Ji
Keyword(s):

The tracking control of H∞ dynamic output feedback is proposed for the fuzzy networked systems of the same category, in which each system is discrete-time nonlinear and is missing measurable data. In other words, the loss of data packet occurs randomly in both the uplink and the downlink. The independent variables that are called the Bernoulli random variables are considered to design the loss of data packets. The method of parallel distributed compensation (PDC) in terms of the T-S fuzzy model is applied to investigate the dynamic controller of tracking control on the systems. Then, it is presented that the analytical H∞ performance of the output error between the reference model and the fuzzy model for the closed-loop system containing dynamic output feedback controller is proven. Furthermore, the achieved sufficient conditions in terms of LMIs ensure that the closed-loop system is stochastically stable in the H∞ sense. Finally, a numerical system is offered to show the effectiveness of the established technique.

2020 ◽
Vol 30 (3) ◽
pp. 367-384
Author(s):
I.G. Kim
Keyword(s):

We consider a control system defined by a linear time-invariant system of differential equations with lumped and distributed delays in the state variable. We construct a controller for the system as linear static output feedback with lumped and distributed delays in the same nodes. We study a finite spectrum assignment problem for the closed-loop system. One needs to construct gain coefficients such that the characteristic function of the closed-loop system becomes a polynomial with arbitrary preassigned coefficients. We obtain conditions on coefficients of the system under which the criterion was found for solvability of the finite spectrum assignment problem. Corollaries on stabilization by linear static output feedback with several delays are obtained for the closed-loop system.

2022 ◽
pp. 014233122110659
Author(s):
Jia Song ◽
Jiangcheng Su ◽
Yunlong Hu ◽
Mingfei Zhao ◽
Ke Gao

This paper investigates the stability and performance of the linear active disturbance rejection control (LADRC)–based system with uncertainties and external disturbance via transfer functions and a frequency-domain view. The performance of LADRC is compared with the state-observer-based state feedback control (SOSFC) and state feedback control (SFC). First, the transfer functions and the error transfer functions for LADRC, SOSFC, and SFC are studied using the state-space method. It is proven that the LADRC-, SOSFC-, and SFC-based closed-loop systems have the same transfer function from the reference input to the output and achieve the same control effects for the nominal system. Then, it is proven for the first time that the LADRC has a better anti-interference ability than the SOSFC and SFC. Besides, the asymptotic stability condition of LADRC-based closed-loop system considering large parameter perturbations is given first. Moreover, the sensitivity analysis of the closed-loop system is carried out. The results show that the LADRC has stronger robustness under parameter perturbations. According to the results, we conclude that the LADRC is of great disturbance rejection ability and strong robustness.