scholarly journals Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

2018 ◽  
Vol 31 ◽  
pp. 08004 ◽  
Author(s):  
Rifandi Raditya Ahmad ◽  
Muhammad Fuad

Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

2018 ◽  
Vol 6 (4) ◽  
pp. 555-563
Author(s):  
Danar Prabowo ◽  
Max Rudolf Muskananfola ◽  
Frida Purwanti

Pantai Maron dan Pantai Tirang merupakan daerah wisata di wilayah pesisir Semarang. Nilai kerentanan pantai tersebut perlu diketahui agar pemanfaatannya tidak terganggu. Pantai Maron dan Pantai Tirang Kecamatan Tugu, Kota Semarang, dianalisis menggunakan metode CVI (Coastal Vulnerability Index), dilakukan pada bulan Mei sampai dengan Juni 2017. Tujuan penelitian ini adalah mengidentifikasi kondisi kerentanan Pantai Maron dan Pantai Tirang, dan mengetahui nilai indeks kerentanan ekosistem Pantai Maron dan Pantai Tirang, Kecamatan Tugu, Kota Semarang. Metode CVI (Coastal Vulnerabilty Index), dilakukan dengan cara menilai kerentanan pantai pada variabel kemiringan pantai, jarak tumbuhan dari pantai, pasang surut rata-rata, tinggi gelombang rata-rata, dan erosi/akresi pantai berdasarkan tabel indeks kerentanan pantai pada lima sel pantai. Hasil penelitian menunjukkan bahwa nilai CVI Pantai Maron antara 6,45 – 9,13 termasuk dalam kategori kerentanan pantai yang rendah (>20,5), sedangkan nilai CVI Pantai Tirang yaitu 10,21 dan 22,82 termasuk dalam kategori kerentanan rendah dan menengah (20,5 – 25,5). Kesimpulan yang dapat disampaikan adalah nilai kerentanan Pantai Maron dan Pantai Tirang, Kecamatan Tugu, Kota Semarang berdasarkan variabel fisik termasuk dalam kategori rendah dan menengah. Maron and Tirang beaches are tourism area in the coastal area of Semarang. The value of vulnerability of the coast should be known so its utilization will not be disturbed. The Maron Beach and Tirang Beach used Coastal Vulnerability Index method. The research was carried out from Mei to June, 2017. The aims of this study are to identify vurnerability conditions of Maron Beach and Tirang Beach, and to know vulnerability index value of Maron Beach and Tirang Beach, Tugu Subdistrict, Semarang City. CVI method used by scoring coastal vulnerability on variables of coastline slope, plants distance from the coast, average tidal range, average wave height, and coastline changes (accresion/erosion) based on table of coastal vulnerability index at five coastal cells. The research show that the CVI value of the Maron Beach 6,45 into 9,13 that include in the low coastal vulnerability category (<20,5), while CVI value of the Tirang Beach 10,21 and 22,82 that include in the low and middle coastal vulnerability category (20,5-25,5). Conclusion of this research is coastal vulnerability index of Maron Beach and Tirang Beach, Tugu Subdistrict, Semarang City based on physical variables belong to low and middle vulnerability.   GMT Detect languageAfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CorsicanCroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchFrisianGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScots GaelicSerbianSesothoShonaSindhiSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshXhosaYiddishYorubaZulu AfrikaansAlbanianAmharicArabicArmenianAzerbaijaniBasqueBelarusianBengaliBosnianBulgarianCatalanCebuanoChichewaChinese (Simplified)Chinese (Traditional)CorsicanCroatianCzechDanishDutchEnglishEsperantoEstonianFilipinoFinnishFrenchFrisianGalicianGeorgianGermanGreekGujaratiHaitian CreoleHausaHawaiianHebrewHindiHmongHungarianIcelandicIgboIndonesianIrishItalianJapaneseJavaneseKannadaKazakhKhmerKoreanKurdishKyrgyzLaoLatinLatvianLithuanianLuxembourgishMacedonianMalagasyMalayMalayalamMalteseMaoriMarathiMongolianMyanmar (Burmese)NepaliNorwegianPashtoPersianPolishPortuguesePunjabiRomanianRussianSamoanScots GaelicSerbianSesothoShonaSindhiSinhalaSlovakSlovenianSomaliSpanishSundaneseSwahiliSwedishTajikTamilTeluguThaiTurkishUkrainianUrduUzbekVietnameseWelshXhosaYiddishYorubaZulu         Text-to-speech function is limited to 200 characters  Options : History : Feedback : DonateClose


2017 ◽  
Vol 13 (2) ◽  
pp. 157 ◽  
Author(s):  
Ruzana Dhiauddin ◽  
Wisnu Arya Gemilang ◽  
Ulung Jantama Wisha ◽  
Guntur Adhi Rahmawan ◽  
Gunardi Kusumah

The diversity function of coastal areas requires the increasing need for land and infrastructure that will lead to new problems such as changes in coastal morphology, the occurrence of erosion and accretion, which is supported by the population growth caused the increasing of coastal vulnerable towards hazards. This paper aims to explain the parameters affect Simeulue Island’s coastal vulnerability - beach slope, geomorphology, geology, shoreline change, mean tidal range and mean wave height - and its mapping. The data used were the bathymetry, tide, and currents, the topography of coastal morphology, LANDSAT imagery of 2000 and 2015. To determine the coastal vulnerability level, we implemented CVI (Coastal Vulnerability Index) method of 6 parameters. Finally, we found that CVI from these physical parameters ranges between 1.291to 5.00, which were classified into five classes; 1.291 – 1.826 (very low), 1.826 – 2.449 (low), 2.449 – 2.887 (moderate), 2.887 – 3.651(high), and 3.651 – 5.00 (very high).


2021 ◽  
Vol 214 ◽  
pp. 105916
Author(s):  
A.I.A. Hamid ◽  
A.H.M. Din ◽  
N.M. Abdullah ◽  
N. Yusof ◽  
M.R.A. Hamid ◽  
...  

2020 ◽  
Vol 153 ◽  
pp. 03002
Author(s):  
Aninda W. Rudiastuti ◽  
Ati Rahadiati ◽  
Ratna S. Dewi ◽  
Dewayany Soetrisno ◽  
Erwin Maulana

Many coastal areas and infrastructure suffered from unprecedented hazards such as storms, flooding, and erosion. Thus, it is increasing the vulnerability of urban coastal areas aggravated with the absence of coastal green infrastructure. Given the state of coastal environments, there is a genuine need to appraise the vulnerability of coastal cities on the basis of the latest projected climate scenarios and existing condition. Hence, to asses, the vulnerability level of Mataram coastal, the Coastal Vulnerability Index (CVI) accompanied by pre-assessment of readiness to climate disruption. The CVI used to map coastal into five classes of using GIS. As a case study, this approach applied to Mataram City: one of the tourism destinations in Lombok. Two of sub-districts in Mataram City, Ampenan and Sekarbela, laying in the shorelines have undergone coastal flooding and erosion. One of them, Ampenan sub-district, experienced flooding due to river-discharge and became the most severe location during inundation. Results indicated that along ±9000 meters of Mataram coast possess vulnerability level in moderate to very high-risk level. The assessment also showed that sea-level rise is not the only critical issue but also geomorphology and shoreline changes, the existence of green infrastructure, also human activity parameters took important part to be assessed.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Gill J. Ainee ◽  
A.M. Anwar ◽  
S. Omar K

Climate change has brought about many threats to the ecosystem by inducing natural hazards, particularly sea level rise. Coastal areas then are subjected to many adverse effects of sea level rise, hence posing a risk to the safety of the coastal population, resources and assets. As part of the mitigation and adaptation measures against these effects, the Coastal Vulnerability Index (CVI) was implemented by many coastal regions. The CVI is an index-based tool to map the risks related to coastal changes. In Malaysia, the practice of CVI is still in its initial stages. Whereby, the Department of Irrigation and Drainage (DID) Malaysia had earlier carried out two pilot projects on CVI. The first is located at Tanjung Piai and the second at the west coast of Pulau Langkawi. This paper reviews the definition and concept of CVI. An alternative implementation approach of CVI in Malaysia is also discussed.


2019 ◽  
Vol 178 ◽  
pp. 104799 ◽  
Author(s):  
Aysun Koroglu ◽  
Roshanka Ranasinghe ◽  
José A. Jiménez ◽  
Ali Dastgheib

2016 ◽  
Vol 85 (1) ◽  
pp. 329-347 ◽  
Author(s):  
Seif-eddine Cherif ◽  
Mimoun Chourak ◽  
Mohamed Abed ◽  
Luis Pujades

Sign in / Sign up

Export Citation Format

Share Document