scholarly journals Tectono-thermal Evolution of the Lower Paleozoic Petroleum Source Rocks in the Southern Lublin Trough: Implications for Shale Gas Exploration from Maturity Modelling

2018 ◽  
Vol 35 ◽  
pp. 02002
Author(s):  
Dariusz Botor

The Lower Paleozoic basins of eastern Poland have recently been the focus of intensive exploration for shale gas. In the Lublin Basin potential unconventional play is related to Lower Silurian source rocks. In order to assess petroleum charge history of these shale gas reservoirs, 1-D maturity modeling has been performed. In the Łopiennik IG-1 well, which is the only well that penetrated Lower Paleozoic strata in the study area, the uniform vitrinite reflectance values within the Paleozoic section are interpreted as being mainly the result of higher heat flow in the Late Carboniferous to Early Permian times and ~3500 m thick overburden eroded due to the Variscan inversion. Moreover, our model has been supported by zircon helium and apatite fission track dating. The Lower Paleozoic strata in the study area reached maximum temperature in the Late Carboniferous time. Accomplished tectono-thermal model allowed establishing that petroleum generation in the Lower Silurian source rocks developed mainly in the Devonian – Carboniferous period. Whereas, during Mesozoic burial, hydrocarbon generation processes did not develop again. This has negative influence on potential durability of shale gas reservoirs.

2018 ◽  
Vol 37 (6) ◽  
pp. 791-804 ◽  
Author(s):  
Yuantao Gu ◽  
Quan Wan ◽  
Wenbin Yu ◽  
Xiaoxia Li ◽  
Zhongbin Yu

2020 ◽  
Vol 5 (5) ◽  
pp. 241-253
Author(s):  
Xianqing Li ◽  
Yangyang Li ◽  
Jiehao Li ◽  
Xiaoyan Zou ◽  
Man Guo ◽  
...  

2018 ◽  
Vol 36 (6) ◽  
pp. 1482-1497
Author(s):  
Qiang Xu ◽  
Fengyin Xu ◽  
Bo Jiang ◽  
Yue Zhao ◽  
Xin Zhao ◽  
...  

We analyzed the tectonic evolution characteristics, sedimentary environment, geochemical characteristics, petrological characteristics, and gas-bearing properties of three mudstone sections of the Lower Paleozoic in Ningwu Basin, NE China, and determined the geologic characteristics and resource potential of the transitional facies shale gas. Geochemical analysis of the organic carbon content, kerogen macerals, and vitrinite reflectance of the shale samples showed that the total organic content was generally over 2.0%, the main organic type was type III, and the vitrinite reflectance values (Ro) were between 1.20 and 1.90%. Thus, the mudstones are good shale gas source rocks. The thickness of the three mudstone sections was approximately 30–70 m, and the average porosity was 3.10%. The pore types were diverse with good reservoir capacity. The shale gas resources of the Carboniferous-Permian transitional facies estimated by the volumetric method were approximately 2798.97 × 108–4643.09 × 108 m3. Through a comparison with shales in SW China, where shale gas has been successfully exploited, we determined the preferred criteria for favorable shale gas areas, as well as favorable areas for shale gas enrichment.


2020 ◽  
pp. 1-49
Author(s):  
Haikuan Nie ◽  
Xiaoliang Wei ◽  
Jinchuan Zhang ◽  
Qian Chen ◽  
Guangxiang Liu ◽  
...  

Gas reservoirs can be divided into two types based on the migration and accumulation processes, and distribution characteristics associated with the reservoirs: continuous accumulation that is within or adjacent to the source rocks and discontinuous accumulation that is in the reservoir rocks. Correspondingly, reservoirs can also be classified as conventional reservoirs, unconventional reservoirs and reservoirs in a transitional state. In order to demonstrate differences and regularities in the distribution characteristics and formation mechanisms of the two accumulation types, the continuous and discontinuous hydrocarbon accumulations in the Hangjinqi area of the Ordos Basin, China, is systematically analyze. Continuous accumulation (coalbed methane, shale gas, basin-centered gas, water-soluble gas) and discontinuous accumulation reservoirs (various traps) are located in the southern and northern regions of the Hangjinqi area, respectively, and they may be changed with the source rock quality, migration force, reservoir capacity and trapping condition. Several factors, such as hydrocarbon generation ability, porosity, and cap rock-trap combinations, are recognized here as essential factors for the formation and current distribution of gas reservoirs in the study area. Understanding the distribution characteristics of continuous accumulation and discontinuous accumulation can predict the potential gas reservoirs types based on discovered gas reservoirs. It is recommended to explore anticline gas reservoirs in the north of Boerjianghaizi fault, and CBM, shale gas and basin-centered gas reservoirs in the south of Boerjianghaizi fault. Though shale gas exploration activity is still lacking in the study area, we believe that the maturity and the burial depth of the marine-continental organic-rich shale in the Permian Shanxi-Taiyuan Formations are suitable for shale gas generation and preservation, indicating further research on the upper Paleozoic shale source rocks is required.


2018 ◽  
Vol 89 ◽  
pp. 14-26 ◽  
Author(s):  
Qingtao Wang ◽  
Hong Lu ◽  
Taoli Wang ◽  
Dayong Liu ◽  
Ping'an Peng ◽  
...  

2015 ◽  
Author(s):  
Jamal A. Madi ◽  
Elhadi M. Belhadj

Abstract Oman's petroleum systems are related to four known source rocks: the Precambrian-Lower Cambrian Huqf, the Lower Silurian Sahmah, the Late Jurassic Shuaiba-Tuwaiq and the Cretaceous Natih. The Huqf and the Natih have sourced almost all the discovered fields in the country. This study examines the shale-gas and shale-oil potential of the Lower Silurian Sahmah in the Omani side of the Rub al Khali basin along the Saudi border. The prospective area exceeds 12,000 square miles (31,300 km2). The Silurian hot shale at the base of the Sahmah shale is equivalent to the known world-class source rock, widespread throughout North Africa (Tannezouft) and the Arabian Peninsula (Sahmah/Qusaiba). Both thickness and thermal maturities increase northward toward Saudi Arabia, with an apparent depocentre extending southward into Oman Block 36 where the hot shale is up to 55 m thick and reached 1.4% vitrinite reflectance (in Burkanah-1 and ATA-1 wells). The present-day measured TOC and estimated from log signatures range from 0.8 to 9%. 1D thermal modeling and burial history of the Sahmah source rock in some wells indicate that, depending on the used kinetics, hydrocarbon generation/expulsion began from the Early Jurassic (ca 160 M.a.b.p) to Cretaceous. Shale oil/gas resource density estimates, particularly in countries and plays outside North America remain highly uncertain, due to the lack of geochemical data, the lack of history of shale oil/gas production, and the valuation method undertaken. Based on available geological and geochemical data, we applied both Jarvie (2007) and Talukdar (2010) methods for the resource estimation of: (1) the amount of hydrocarbon generated and expelled into conventional reservoirs and (2) the amount of hydrocarbon retained within the Silurian hot shale. Preliminary results show that the hydrocarbon potential is distributed equally between wet natural gas and oil within an area of 11,000 square mile. The Silurian Sahmah shale has generated and expelled (and/or partly lost) about 116.8 billion of oil and 275.6 TCF of gas. Likewise, our estimates indicate that 56 billion of oil and 273.4 TCF of gas are potentially retained within the Sahmah source rock, making this interval a future unconventional resource play. The average calculated retained oil and gas yields are estimated to be 6 MMbbl/mi2 (or 117 bbl oil/ac-ft) and 25.3 bcf/mi2 (or 403 mcf gas/ac-ft) respectively. To better compare our estimates with Advanced Resources International (EIA/ARI) studies on several Silurian shale plays, we also carried out estimates based on the volumetric method. The total oil in-place is 50.2 billion barrels, while the total gas in-place is 107.6 TCF. The average oil and gas yield is respectively 7 MMbbl/mi2 and 15.5 bcf/mi2. Our findings, in term of oil and gas concentration, are in line or often smaller than all the shale oil/gas plays assessed by EIA/ARI and others.


Sign in / Sign up

Export Citation Format

Share Document