scholarly journals Pollution data analysis and characteristics of volatile organic compounds in the environment

2018 ◽  
Vol 38 ◽  
pp. 01004
Author(s):  
Qi Wang ◽  
Chēn Wang ◽  
Lujian Hou ◽  
Bo Lv ◽  
Chén WANG

Volatile organic compounds (VOCs) have a wide range of sources and have a significant impact on the ecological environment and human health, which have attracted wide attention of many researchers. In this paper, the pollution characteristics of VOCs, the role of VOCs in atmospheric chemistry including OH reaction reactivity (LOH), Ozone Formation Potential (OFP) and SOA generation potential (SOAP), VOCs source apportionment were discussed and reviewed.

2021 ◽  
pp. 14-28
Author(s):  
Narita Fakkaew ◽  
Surat Bualert ◽  
Thunyapat Thongyen ◽  
Thitima Rungratanaubon

Volatile organic compounds (VOCs) play an important role in atmospheric chemistry due to their high reactivity—reacting photochemically with oxides of nitrogen (NOx) in the presence of solar radiation forming tropospheric ozone (O3). Each VOC species have different effects on ozone formation according to the rates and pathways of their reactions. The objective of this study aims to examine ozone formation from the estimation of ozone formation potential (OFP). The observation of 29 VOCs species was carried out in the urban area near the roads of Bangkok, Thailand. Measurements were carried out during the dry season, from 16th February to 15th March, 2018. The air samples were analyzed using gas chromatography flame ionization detector (GC-FID). The results showed that toluene had the highest VOCs concentration followed by propane, and carbon tetrachloride (CCl4). The average ratio of benzene to toluene (B/T) and toluene to benzene (T/B) indicate that both toluene and benzene emitted from industrial area and vehicular emission. Ratio of m/p-xylene to benzene (m/p-X/B) indicate that BTEX emitted far from the source. The ozone formation potential indicated that toluene was the main VOC contributing to the total ozone formation. High VOCs concentration in monitoring site was influenced by vehicular sources and the sea breeze brought the pollutants back to the land.


2019 ◽  
Vol 19 (13) ◽  
pp. 8897-8913 ◽  
Author(s):  
Meng Li ◽  
Qiang Zhang ◽  
Bo Zheng ◽  
Dan Tong ◽  
Yu Lei ◽  
...  

Abstract. Non-methane volatile organic compounds (NMVOCs) are important ozone and secondary organic aerosol precursors and play important roles in tropospheric chemistry. In this work, we estimated the total and speciated NMVOC emissions from China's anthropogenic sources during 1990–2017 by using a bottom-up emission inventory framework and investigated the main drivers behind the trends. We found that anthropogenic NMVOC emissions in China have been increasing continuously since 1990 due to the dramatic growth in activity rates and absence of effective control measures. We estimated that anthropogenic NMVOC emissions in China increased from 9.76 Tg in 1990 to 28.5 Tg in 2017, mainly driven by the persistent growth from the industry sector and solvent use. Meanwhile, emissions from the residential and transportation sectors declined after 2005, partly offsetting the total emission increase. During 1990–2017, mass-based emissions of alkanes, alkenes, alkynes, aromatics, oxygenated volatile organic compounds (OVOCs) and other species increased by 274 %, 88 %, 4 %, 387 %, 91 % and 231 %, respectively. Following the growth in total NMVOC emissions, the corresponding ozone formation potential (OFP) increased from 38.2 Tg of O3 in 1990 to 99.7 Tg of O3 in 2017. We estimated that aromatics accounted for the largest share (43 %) of the total OFP, followed by alkenes (37 %) and OVOCs (10 %). Growth in China's NMVOC emissions was mainly driven by the transportation sector before 2000, while industry and solvent use dominated the emission growth during 2000–2010. Since 2010, although emissions from the industry sector and solvent use kept growing, strict control measures on transportation and fuel transition in residential stoves have successfully slowed down the increasing trend, especially after the implementation of China's clean air action since 2013. However, compared to large emission decreases in other major air pollutants in China (e.g., SO2, NOx and primary PM) during 2013–2017, the relatively flat trend in NMVOC emissions and OFP revealed the absence of effective control measures, which might have contributed to the increase in ozone during the same period. Given their high contributions to emissions and OFP, tailored control measures for solvent use and industrial sources should be developed, and multi-pollutant control strategies should be designed to mitigate both PM2.5 and ozone pollution simultaneously.


Sign in / Sign up

Export Citation Format

Share Document