scholarly journals The application of Standardized Precipitation Index (SPI) to monitor drought in surface and groundwaters

2018 ◽  
Vol 44 ◽  
pp. 00082
Author(s):  
Justyna Kubicz

The paper presents the initial studies with the aim to assess the possibility to apply of Standardized Precipitation Index SPI to monitor drought in surface and groundwaters. The fact that data about precipitation are highly available allows for precise monitoring of the periods of occurrence and intensification of meteorological drought by determining the standardized SPI index. The evaluation of current water deficits in surface water courses and groundwaters is very difficult due to the fact that the measurement network is relatively scarce. In order to apply SPI to monitor hydrological and hydrogeological drought, it is required to assess the significance and level of the correlation between drought indices in the test area and then to calculate the probability of correct determination of drought in surface and groundwaters with use of SPI.

Author(s):  
M. Behifar ◽  
A. A. Kakroodi ◽  
M. Kiavarz ◽  
F. Amiraslani

Abstract. The main problem using meteorological drought indices include inappropriate distribution of meteorological stations. Satellite data have reliable spatial and temporal resolution and provide valuable information used in many different applications. The Standardized precipitation index has several advantages. The SPI is based on rainfall data alone and has a variable time scale and is thus conducive to describing drought conditions for different application.This study aims to calculate SPI using satellite precipitation data and compare the results with traditional methods. To do this, satellite-based precipitation data were assessed against station data and then the standardized precipitation index was calculated. The results have indicated that satellite-based SPI could illustrate drought spatial characteristic more accurate than station-based index. Also, the standardized property of the SPI index allows comparisons between different locations, which is one of the remote sensing drought indices limitations.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.


Author(s):  
Md. Anarul H. Mondol ◽  
Subash C. Das ◽  
Md. Nurul Islam

Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI) for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable than other districts.


2005 ◽  
Vol 2 (4) ◽  
pp. 1221-1246 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the higher (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to higher time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Abebe Senamaw ◽  
Solomon Addisu ◽  
K. V. Suryabhagavan

Abstract Background Geographic Information System (GIS) and Remote Sensing play an important role for near real time monitoring of drought condition over large areas. The aim of this study was to assess spatial and temporal variation of agricultural and meteorological drought using temporal image of eMODIS NDVI based vegetation condition index (VCI) and standard precipitation index (SPI) from the year 2000 to 2016. To validate the strength of drought indices correlation analysis was made between VCI and crop yield anomaly as well as standardized precipitation index (SPI) and crop yield anomaly. Results The results revealed that the year 2009 and 2015 was drought years while the 2001 and 2007 were wet years. There was also a good correlation between NDVI and rainfall (r = 0.71), VCI and crop yield anomaly (0.72), SPI and crop yield anomaly (0.74). Frequency of metrological and agricultural drought was compiled by using historical drought intensity map. The result shows that there was complex and local scale variation in frequency of drought events in the study period. There was also no year without drought in many parts of the study area. Combined drought risk map also showed that 8%, 56% and 35% of the study area were vulnerable to very severe, severe and moderate drought condition respectively. Conclusions In conclusion, the study area is highly vulnerable to agricultural and meteorological drought. There was also no year without drought in many parts of the study area. Thus besides mapping drought vulnerable areas, integrating socio-economic data for better understand other vulnerable factors were recommended.


2020 ◽  
Vol 11 (S1) ◽  
pp. 29-43 ◽  
Author(s):  
Okan Mert Katipoğlu ◽  
Reşat Acar ◽  
Selim Şengül

Abstract Drought incidents occur due to the fact that precipitation values are below average for many years. Drought causes serious effects in many sectors, such as agriculture, economy, health, and energy. Therefore, the determination of drought and water scarcity, monitoring, management, and planning of drought and taking early measures are important issues. In order to solve these issues, the advantages and disadvantages of five different meteorological drought indices were compared, and the most effective drought index was determined for monitoring drought. Accordingly, in the monthly, 3-month, and 12-month time period, covering the years between 1966 and 2017 (52 years), Standardized Precipitation Index (SPI), Statistical Z-Score Index (ZSI), Rainfall Anomaly Index (RAI), Standardized Precipitation Evapotranspiration Index (SPEI), and Reconnaissance Drought Index (RDI) were used. It was concluded that precipitation-based SPI and ZSI are similar patterns and precipitation, and temperature-based SPEI and RDI are similar patterns. Also, it has been determined that RAI is more effective than other indices in determining the periods of extreme drought or wet. Furthermore, SPEI and RDI have been found to be superior to other indices as they take into account the water consumption and climate effects caused by evapotranspiration.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Anurag Malik ◽  
Anil Kumar ◽  
Priya Rai ◽  
Alban Kuriqi

Accurate monitoring and forecasting of drought are crucial. They play a vital role in the optimal functioning of irrigation systems, risk management, drought readiness, and alleviation. In this work, Artificial Intelligence (AI) models, comprising Multi-layer Perceptron Neural Network (MLPNN) and Co-Active Neuro-Fuzzy Inference System (CANFIS), and regression, model including Multiple Linear Regression (MLR), were investigated for multi-scalar Standardized Precipitation Index (SPI) prediction in the Garhwal region of Uttarakhand State, India. The SPI was computed on six different scales, i.e., 1-, 3-, 6-, 9-, 12-, and 24-month, by deploying monthly rainfall information of available years. The significant lags as inputs for the MLPNN, CANFIS, and MLR models were obtained by utilizing Partial Autocorrelation Function (PACF) with a significant level equal to 5% for SPI-1, SPI-3, SPI-6, SPI-9, SPI-12, and SPI-24. The predicted multi-scalar SPI values utilizing the MLPNN, CANFIS, and MLR models were compared with calculated SPI of multi-time scales through different performance evaluation indicators and visual interpretation. The appraisals of results indicated that CANFIS performance was more reliable for drought prediction at Dehradun (3-, 6-, 9-, and 12-month scales), Chamoli and Tehri Garhwal (1-, 3-, 6-, 9-, and 12-month scales), Haridwar and Pauri Garhwal (1-, 3-, 6-, and 9-month scales), Rudraprayag (1-, 3-, and 6-month scales), and Uttarkashi (3-month scale) stations. The MLPNN model was best at Dehradun (1- and 24- month scales), Tehri Garhwal and Chamoli (24-month scale), Haridwar (12- and 24-month scales), Pauri Garhwal (12-month scale), Rudraprayag (9-, 12-, and 24-month), and Uttarkashi (1- and 6-month scales) stations, while the MLR model was found to be optimal at Pauri Garhwal (24-month scale) and Uttarkashi (9-, 12-, and 24-month scales) stations. Furthermore, the modeling approach can foster a straightforward and trustworthy expert intelligent mechanism for projecting multi-scalar SPI and decision making for remedial arrangements to tackle meteorological drought at the stations under study.


Sign in / Sign up

Export Citation Format

Share Document