scholarly journals Análisis comparativo de índices de sequía en Andalucía para el periodo 1901-2012

2016 ◽  
Vol 42 (1) ◽  
pp. 67 ◽  
Author(s):  
M. Peña-Gallardo ◽  
S. R. Gámiz-Fortís ◽  
Y. Castro-Diez ◽  
M. J. Esteban-Parra

The aim of this paper is the analysis of the detection and evolution of droughts occurred in Andalusia for the period 1901-2012, by applying three different drought indices: the Standardized Precipitation Index (SPI), the Standardized Precipitation and Evapotranspiration Index (SPEI) and the Standardized Drought-Precipitation Index (IESP), computed for three time windows from the initial period 1901-2012. This analysis has been carried out after a preliminary study of precipitation trends with the intention of understanding the precipitation behaviour, because this climatic variable is one of the most important in the study of extreme events. The specific objectives of this study are: (1) to investigate and characterize the meteorological drought events, mainly the most important episodes in Andalusia; (2) to provide a global evaluation of the capacities of the three different considered indices in order to characterize the drought in a heterogeneous climatically territory; and (3) to describe the temporal behaviour of precipitation and drought indices series in order to establish the general characteristics of their evolution in Andalusia. The results have shown that not all the indices respond similarly identifying the intensity and duration of dry periods in this kind of region where geographical and climatic variability is one of the main elements to be considered.

Author(s):  
M. Behifar ◽  
A. A. Kakroodi ◽  
M. Kiavarz ◽  
F. Amiraslani

Abstract. The main problem using meteorological drought indices include inappropriate distribution of meteorological stations. Satellite data have reliable spatial and temporal resolution and provide valuable information used in many different applications. The Standardized precipitation index has several advantages. The SPI is based on rainfall data alone and has a variable time scale and is thus conducive to describing drought conditions for different application.This study aims to calculate SPI using satellite precipitation data and compare the results with traditional methods. To do this, satellite-based precipitation data were assessed against station data and then the standardized precipitation index was calculated. The results have indicated that satellite-based SPI could illustrate drought spatial characteristic more accurate than station-based index. Also, the standardized property of the SPI index allows comparisons between different locations, which is one of the remote sensing drought indices limitations.


2014 ◽  
Vol 46 (3) ◽  
pp. 463-476 ◽  
Author(s):  
Siti Nazahiyah Rahmat ◽  
Niranjali Jayasuriya ◽  
Muhammed Bhuiyan

Droughts adversely impact rural and urban communities, industry, primary production and, thus, a country's economy. Drought monitoring is directed to detecting the onset, persistence and severity of the drought. In this study, meteorological drought indices such as the Standardized Precipitation Index (SPI), the Reconnaissance Drought Index (RDI) and deciles were assessed to investigate how well these indices reflect drought conditions in Victoria, Australia. The Theory of Runs was also used to identify the drought deficit. The study uses 55 years (1955–2010) of monthly precipitation and reference evapotranspiration data for five selected meteorological stations in Victoria, Australia. Results show that drought characterization using SPI and RDI provides a standardized classification of severity thus exhibiting advantages over deciles. As RDI considers both rainfall and potential evapotranspiration in calculations, it could be sensitive to climatic variability. For characterizing agricultural droughts, the application of the RDI is recommended. The use of the SPI was shown to be satisfactory for assessing and monitoring meteorological droughts. The SPI was also successful in detecting the onset and the end of historical droughts for the selected events.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Data ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 109
Author(s):  
Matthew P. Lucas ◽  
Clay Trauernicht ◽  
Abby G. Frazier ◽  
Tomoaki Miura

Spatially explicit, wall-to-wall rainfall data provide foundational climatic information but alone are inadequate for characterizing meteorological, hydrological, agricultural, or ecological drought. The Standardized Precipitation Index (SPI) is one of the most widely used indicators of drought and defines localized conditions of both drought and excess rainfall based on period-specific (e.g., 1-month, 6-month, 12-month) accumulated precipitation relative to multi-year averages. A 93-year (1920–2012), high-resolution (250 m) gridded dataset of monthly rainfall available for the State of Hawai‘i was used to derive gridded, monthly SPI values for 1-, 3-, 6-, 9-, 12-, 24-, 36-, 48-, and 60-month intervals. Gridded SPI data were validated against independent, station-based calculations of SPI provided by the National Weather Service. The gridded SPI product was also compared with the U.S. Drought Monitor during the overlapping period. This SPI product provides several advantages over currently available drought indices for Hawai‘i in that it has statewide coverage over a long historical period at high spatial resolution to capture fine-scale climatic gradients and monitor changes in local drought severity.


2009 ◽  
Vol 48 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Bradfield Lyon ◽  
Lareef Zubair ◽  
Vidhura Ralapanawe ◽  
Zeenas Yahiya

Abstract In regions of climatic heterogeneity, finescale assessment of drought risk is needed for policy making and drought management, mitigation, and adaptation. The relationship between drought relief payments (a proxy for drought risk) and meteorological drought indicators is examined through a retrospective analysis for Sri Lanka (1960–2000) based on records of district-level drought relief payments and a dense network of 284 rainfall stations. The standardized precipitation index and a percent-of-annual-average index for rainfall accumulated over 3, 6, 9, and 12 months were used, gridded to a spatial resolution of 10 km. An encouraging correspondence was identified between the spatial distribution of meteorological drought occurrence and historical drought relief payments at the district scale. Time series of drought indices averaged roughly over the four main climatic zones of Sri Lanka showed statistically significant (p < 0.01) relationships with the occurrence of drought relief. The 9-month cumulative drought index provided the strongest relationships overall, although 6- and 12-month indicators provided generally similar results. Some cases of appreciable drought without corresponding relief payments could be attributed to fiscal pressures, as during the 1970s. Statistically significant relationships between drought indicators and relief payments point to the potential utility of meteorological drought assessments for disaster risk management. In addition, the study provides an empirical approach to testing which meteorological drought indicators bear a statistically significant relationship to drought relief across a wide range of tropical climates.


2014 ◽  
Vol 12 (3) ◽  
pp. 253-264 ◽  
Author(s):  
Mladen Milanovic ◽  
Milan Gocic ◽  
Slavisa Trajkovic

Drought represents a combined heat-precipitation extreme and has become an increasingly frequent phenomenon in recent years. In order to access the entire analysis of drought, it is necessary to include the analysis of several types of drought. In this paper, impacts of meteorological and agricultural drought were analyzed across the Standardized Precipitation Index (SPI) and Agricultural Rainfall Index (ARI) on the territory of Serbia for the period from 1980 to 2010. For both types of drought, year 2000 is notable as the year when most of the observed stations had the highest drought intensity. It was found that meteorological drought for year 2000 has a higher intensity in the central and southeastern parts of the country, as well as in the north. Of all the stations, the highest intensity of meteorological drought was observed at Loznica station in 1989. Agricultural drought in 2000 had the lowest intensity in western Serbia.


2018 ◽  
Vol 44 ◽  
pp. 00082
Author(s):  
Justyna Kubicz

The paper presents the initial studies with the aim to assess the possibility to apply of Standardized Precipitation Index SPI to monitor drought in surface and groundwaters. The fact that data about precipitation are highly available allows for precise monitoring of the periods of occurrence and intensification of meteorological drought by determining the standardized SPI index. The evaluation of current water deficits in surface water courses and groundwaters is very difficult due to the fact that the measurement network is relatively scarce. In order to apply SPI to monitor hydrological and hydrogeological drought, it is required to assess the significance and level of the correlation between drought indices in the test area and then to calculate the probability of correct determination of drought in surface and groundwaters with use of SPI.


Author(s):  
Md. Anarul H. Mondol ◽  
Subash C. Das ◽  
Md. Nurul Islam

Bangladesh is one of the vulnerable countries of the world for natural disasters. Drought is one of the common and severe calamities in Bangladesh that causes immense suffering to people in various ways. The present research has been carried out to examine the frequency of meteorological droughts in Bangladesh using the long-term rainfall data of 30 meteorological observatories covering the period of 1948–2011. The study uses the highly effective Standardized Precipitation Index (SPI) for drought assessment in Bangladesh. By assessing the meteorological droughts and the history of meteorological droughts of Bangladesh, the spatial distributions of meteorological drought indices were also analysed. The spatial and temporal changes in meteorological drought and changes in different years based on different SPI month intervals were analysed. The results indicate that droughts were a normal and recurrent feature and it occurred more or less all over the country in virtually all climatic regions of the country. As meteorological drought depends on only rainfall received in an area, anomaly of rainfall is the main cause of drought. Bangladesh experienced drought in the years 1950, 1951, 1953, 1954, 1957, 1958, 1960, 1961, 1962, 1963, 1965, 1966, 1967 and 1971 before independence and after independence Bangladesh has experienced droughts in the years 1972, 1973, 1975, 1979, 1980, 1983, 1985, 1992, 1994, 1995, 2002, 2004, 2006, 2009 and 2011 during the period 1948–2011. The study indicated that Rajshahi and its surroundings, in the northern regions and Jessore and its surroundings areas, the island Bhola and surrounding regions, in the south-west region, were vulnerable. In the Sylhet division, except Srimongal, the areas were not vulnerable but the eastern southern sides of the districts Chittagong, Rangamati, Khagrachhari, Bandarban and Teknaf were vulnerable. In the central regions, the districts of Mymensingh and Faridpur were more vulnerable than other districts.


2005 ◽  
Vol 2 (4) ◽  
pp. 1221-1246 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the higher (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to higher time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document