scholarly journals Study on nitrogen removal performance and microbial community structure succession under the condition of anaerobic sludge and low carbon source

2018 ◽  
Vol 53 ◽  
pp. 03049
Author(s):  
Jiabin Wang ◽  
Tianhang Li ◽  
Kang Xie ◽  
Cong Yu ◽  
Xiaoyu Wang ◽  
...  

Under anaerobic low carbon source, the reactor was started-up by inoculating anaerobic sludge. The nitrogen removal efficiency and nitrogen conversion pathway during the start-up process were analyzed. At the same time, the structure succession of bacteria in the process of start-up was analyzed by PCR-DGGE technology from molecular biology level. The results showed that inoculated anaerobic sludge had a good effect on nitrogen removal under the condition of anaerobic low carbon source.

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 230 ◽  
Author(s):  
Liqiu Zhang ◽  
Wei Lv ◽  
Shugeng Li ◽  
Zhongxuan Geng ◽  
Hainan Yao

Nitrogen removal characteristics and the comparison of the microbial community structure were investigated in different anaerobic ammonia oxidation (Anammox) reactors: an anaerobic sequencing batch reactor (ASBR) and a biofilter reactor. The Anammox systems were inoculated with sludge from the second settling tank of a wastewater treatment plant in Guangzhou, China. After successful start up of Anammox, the microbial community structure of different Anammox reactors were studied through high-throughput sequencing. The results showed that anaerobic ammonium oxidation in the ASBR reactor could successfully start up after 134 days, while Anammox in the biofilter could start up after 114 days. In both systems, total nitrogen removal was at 80% after more than 200 days of operation. The diversity of denitrifying microorganisms was high in both reactors, with Planctomycetes as the main taxa. Anammox bacteria belonging to the genera Candidatus Anammoxoglobus and Kuenenia, were dominant in the ASBR, while all three genera of Candidatus, Anammoxoglobus, Kuenenia, and Brocadia, could be detected in the biofilter reactor. Therefore, the biofilter starts up faster than the ASBR, and contains richer species, which makes it more suitable to domesticate Anammox bacteria.


2012 ◽  
Vol 65 (9) ◽  
pp. 1676-1683 ◽  
Author(s):  
G. M. Tardy ◽  
V. Bakos ◽  
A. Jobbágy

A survey has been carried out involving 55 Hungarian wastewater treatment plants in order to evaluate the wastewater quality, the applied technologies and the resultant problems. Characteristically the treatment temperature is very wide-ranging from less than 10 °C to higher than 26 °C. Influent quality proved to be very variable regarding both the organic matter (typical COD concentration range 600–1,200 mg l−1) and the nitrogen content (typical NH4-N concentration range 40–80 mg l−1). As a consequence, significant differences have been found in the carbon availability for denitrification from site to site. Forty two percent of the influents proved to lack an appropriate carbon source. As a consequence of carbon deficiency as well as technologies designed and/or operated with non-efficient denitrification, rising sludge in the secondary clarifiers typically occurs especially in summer. In case studies, application of intermittent aeration, low DO reactors, biofilters and anammox processes have been evaluated, as different biological nitrogen removal technologies. With low carbon source availability, favoring denitrification over enhanced biological phosphorus removal has led to an improved nitrogen removal.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Chunzhen Zou ◽  
Beibei Guo ◽  
Xuming Zhuang ◽  
Liying Ren ◽  
Shou-Qing Ni ◽  
...  

Abstract The effects of FeS on nitrogen removal performance and microbial community of anammox process were studied. During the start-up period, the removal efficiencies of nitrite and total nitrogen were significantly improved by FeS. The addition of FeS increased the content of iron ions in the reactor and promoted the synthesis of heme c, which was involved in the formation of various enzymes. Compared with the control, the abundance of anammox bacteria in the FeS reactor was increased by 29%, and the expression level of the nirS gene (encoding cd1 type nitrite reductase containing heme) was nearly doubled. The content of nitrite reductase (ammonia-forming) in the community was increased by 26.4%. The difference in functional bacteria and enzyme contents in the microbial community resulted in a difference in nitrogen removal rate (NRR) between the two reactors. High-throughput results indicated that FeS increased the richness and diversity of microbial community and enhanced the metabolic function of the microbial community. The addition of FeS did not change the dominant position of Ca. Kuenenia in both reactors. But the relative abundance of heterotrophic denitrifying bacteria was reduced with FeS, which may be related to the inhibition effect of S2− produced by FeS.


Sign in / Sign up

Export Citation Format

Share Document