scholarly journals Application of Whale Optimization Algorithm in Optimal Allocation of Water Resources

2018 ◽  
Vol 53 ◽  
pp. 04019 ◽  
Author(s):  
Zhihong Yan ◽  
Shuqian Wang ◽  
Bin Liu ◽  
Xinde Li

In order to solve the water crisis, it is important to optimize the allocation of water resources. In this paper, the Whale Optimization Algorithm (WOA) is applied to the optimal allocation of water resources in Xingtai with the goal of maximum economic benefit and minimum total water shortage. The results show that the total water demand of different water users in each district is 26.94×108m3, the total allocated water is 19.83×108m3, the total water shortage is 7.11×108m3, and the water shortage rate was 26.39%. The lack of water is mainly concentrated in the primary industry. The result of the solution reflects the principle of water supply order and water use equity, which is in line with the actual development and utilization of water resources in the study area. It also verifies the feasibility of the whale optimization algorithm, such as less parameter adjustment, faster convergence, and better global optimization ability when solving water resources optimization problems.

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Jin Zhang ◽  
Li Hong ◽  
Qing Liu

The whale optimization algorithm is a new type of swarm intelligence bionic optimization algorithm, which has achieved good optimization results in solving continuous optimization problems. However, it has less application in discrete optimization problems. A variable neighborhood discrete whale optimization algorithm for the traveling salesman problem (TSP) is studied in this paper. The discrete code is designed first, and then the adaptive weight, Gaussian disturbance, and variable neighborhood search strategy are introduced, so that the population diversity and the global search ability of the algorithm are improved. The proposed algorithm is tested by 12 classic problems of the Traveling Salesman Problem Library (TSPLIB). Experiment results show that the proposed algorithm has better optimization performance and higher efficiency compared with other popular algorithms and relevant literature.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1477
Author(s):  
Chun-Yao Lee ◽  
Guang-Lin Zhuo

This paper proposes a hybrid whale optimization algorithm (WOA) that is derived from the genetic and thermal exchange optimization-based whale optimization algorithm (GWOA-TEO) to enhance global optimization capability. First, the high-quality initial population is generated to improve the performance of GWOA-TEO. Then, thermal exchange optimization (TEO) is applied to improve exploitation performance. Next, a memory is considered that can store historical best-so-far solutions, achieving higher performance without adding additional computational costs. Finally, a crossover operator based on the memory and a position update mechanism of the leading solution based on the memory are proposed to improve the exploration performance. The GWOA-TEO algorithm is then compared with five state-of-the-art optimization algorithms on CEC 2017 benchmark test functions and 8 UCI repository datasets. The statistical results of the CEC 2017 benchmark test functions show that the GWOA-TEO algorithm has good accuracy for global optimization. The classification results of 8 UCI repository datasets also show that the GWOA-TEO algorithm has competitive results with regard to comparison algorithms in recognition rate. Thus, the proposed algorithm is proven to execute excellent performance in solving optimization problems.


2021 ◽  
pp. 1-17
Author(s):  
Maodong Li ◽  
Guanghui Xu ◽  
Yuanwang Fu ◽  
Tingwei Zhang ◽  
Li Du

 In this paper, a whale optimization algorithm based on adaptive inertia weight and variable spiral position updating strategy is proposed. The improved algorithm is used to solve the problem that the whale optimization algorithm is more dependent on the randomness of the parameters, so that the algorithm’s convergence accuracy and convergence speed are insufficient. The adaptive inertia weight, which varies with the fitness of individual whales, is used to balance the algorithm’s global search ability and local exploitation ability. The variable spiral position update strategy based on the collaborative convergence mechanism is used to dynamically adjust the search range and search accuracy of the algorithm. The effective combination of the two can make the improved whale optimization algorithm converge to the optimal solution faster. It had been used 18 international standard test functions, including unimodal function, multimodal function, and fixed-dimensional function to test the improved whale optimization algorithm in this paper. The test results show that the improved algorithm has faster convergence speed and higher algorithm accuracy than the original algorithm and several classic algorithms. The algorithm can quickly converge to near the optimal value in the early stage, and then effectively jump out of the local optimal through adaptive adjustment, and has a certain ability to solve large-scale optimization problems.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 192
Author(s):  
Muhammad Hakimin Nasru ◽  
Ismail Musirin ◽  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Siti Rafidah Abdul Rahim ◽  
Muhamad Hatta Hussain ◽  
...  

The key of RPP is the optimal allocation of reactive power considering location and size. This paper presents the loss minimization in optimal reactive power planning (ORPP) based on Whale Optimization Algorithm (WOA). The objective is to minimize transmission loss by considering several load conditions at bus 3, bus 15 and bus 21. Reactive Power Scheduling (RPS) and Transformer Tap Changer Setting (TTCS) were set as the control variables. Validation was conducted on the IEEE 30 Bus RTS. Results from the study indicate that the proposed WOA can minimize transmission loss better than Evolutionary Programming (EP). 


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.


2020 ◽  
Vol 5 (3) ◽  
pp. 147-155
Author(s):  
I-Ming Chao ◽  
Shou-Cheng Hsiung ◽  
Jenn-Long Liu

Whale Optimization Algorithm (WOA) is a new kind of swarm-based optimization algorithm that mimics the foraging behavior of humpback whales. WOA models the particular hunting behavior with three stages: encircling prey, bubble-net attacking, and search for prey. In this work, we proposed a new linear decreasing inertia weight with a random exploration ability (LDIWR) strategy. It also compared with the other three inertia weight WOA (IWWOA) methods: constant inertia weight (CIW), linear decreasing inertia weight (LDIW), and linear increasing inertia weight (LIIW) by adding fixed or linear inertia weights to the position vector of the reference whale. The four IWWOAs are tested with 23 mathematical and theoretical optimization benchmark functions. Experimental results show that most of IWWOAs outperform the original WOA in terms of solution accuracy and convergence rate when solving global optimization problems. Accordingly, the LDIWR strategy produces a better balance between exploration and exploitation capabilities for multimodal functions.


Sign in / Sign up

Export Citation Format

Share Document