scholarly journals Experimental Study of Numerical Relay for Over-current Protection in Solar Panel for Securing the Hydrogen production

2018 ◽  
Vol 61 ◽  
pp. 00005
Author(s):  
Chawki Ameur menad ◽  
M. Bouchahdane ◽  
Rabah Gomri

Every electrical system in solar panel can fail during electrical faults. In this incidence, high fault current can occur. Such current must be interrupted by a protective system. The research was supported by experimental tests. In work conditions close to real, the numerical relay REF542plus was tested for both instantaneous and extremely inverse definite minimum time IDMT over-current protection functions with the help of CMC 365 injection and test equipment associated to Test Universe software. Protecting hybrid solar panels generating by different renewable energy sources for hydrogen production from over-current is very important for improving the energy efficiency in one hand, and securing the function in critical condition from damage of the solar cells in second hand. The contribution of this research is controlling the over-current in the solar panel for securing the continuation of the hydrogen production from renewable energy sources in short time. The obtained results allowed the observation of the relay’s behavior when subjected to certain faults; where the solar panel keeps producing the hydrogen.

Author(s):  
N. Shibane ◽  
Nnamdi Nwulu ◽  
Eustace Dogo

Renewable energy sources are currently regarded as viable options for stabilizing the energy crisis globally as well as addressing global warming challenges. Solar energy is the most promising and sustainable energy source as compared to other renewable energy sources such as coal, nuclear, wind, gas, and hydro energy. The increasing demand for solar panels should be reason enough to investigate ways in which we can increase their efficiency as much as possible. Dust, dirt, and bird dropping are major factors that can affect the performance of solar panel systems. This work presents the development of a solar panel cleaning system that automatically detects dust particles and cleans the solar panel to ensure the continues efficiency of the solar system is at an optimal level. The system comprises of five subsystems: dust sensing, water pumping, microcontroller, cleaning mechanism, and the power system. Tests carried out on the system shows its quick response to signals and effectiveness in cleaning the solar panel whenever dust particles are detected.


2021 ◽  
Author(s):  
Madhura J Jagtap ◽  
Ashwinqi V Mane ◽  
Aashish A Joshi

The invention and installation of a "grid tie rotating solar rooftop panel utilising PIC microcontroller" is presented in this work. As non-renewable energy supplies become scarcer, renewable energy sources are increasingly used to generate electricity. Solar panels are becoming increasingly popular, and this idea is based on a pic microcontroller rotates the solar panel according to position of sun. The solar panel's energy is then stored in a battery, which is then used to power the home or business. The grid tie mechanism then returns the remaining energy to the power station. As a result, many people's power usage will be lowered as a result of these projects. As light shines on the photodiode, a voltage is formed across these diodes, which is generated by the photovoltaic cell. The number of diodes in a series is termed an array, and these arrays are connected in parallel. As a result, the standard wattage panel is formed. Through a net metering system, the generated ac will be connected to the main grid. As a result, when our demand is lower, the generated supply will flow back to the grid, rotating the metre in the other way. The net metre system is named after the fact that as our demand increases at night, the metre rotates in the forward direction.


2019 ◽  
Vol 1 (1) ◽  
pp. 14
Author(s):  
Rizal Akbarudin Rahman ◽  
Aripriharta Aripriharta ◽  
Hari Putranto

The use of renewable energy as a source of electrical energyincreases every year. Unfortunately, Indonesia does not have manypower plants that utilize renewable energy sources. The mostpotential renewable energy in Indonesia is the sunlight with the helpof solar panels that converts solar energy into electrical energy.However, the environment could affect the solar panel module andin turn, affect the performance of solar panels or the generatedelectric energy. This research calculated the performance of solarpanels with a single-diode model using the Five Parameters methodthat required solar panel module specification data, the totalradiation absorbed by the solar panel module, and the temperatureof the environment. The Five Parameters method is a methodmodeled after solar panel module performance in the form of thesingle-diode equivalent circuit. The Five Parameters method isreliable in predicting the energy produced by the solar panels whenthe input data is limited. The results for using the Five Parametersin monocrystalline solar panels were Isc = 1.827 A, Imp = 0.662 A,Voc = 18.221 V, Vmp = 15.019 V, Pmp = 9.955 W. And the results inpolycrystalline solar panels were Isc = 1.926 A, Imp = 0.686 A, Voc =17.594 V, Vmp = 14.166 V, Pmp = 9.722 W. Based on the results; itwas concluded that the most efficient and optimised types of solarpanels on natural conditions in Sendang Biru Beach was themonocrystalline solar panel because it produced electrical outputpower of 9.955 W. Therefore, there could be a manufacturer ofsolar energy power plants to reduce the cost of electricity in thecoastal area, such as in Sendang Biru Beach.


Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


2015 ◽  
pp. 2016-2072
Author(s):  
Radian Belu

The use of renewable energy sources is increasingly being pursued as a supplemental and an alternative to traditional energy generation. Several distributed energy systems are expected to a have a significant impact on the energy industry in the near future. As such, the renewable energy systems are presently undergoing a rapid change in technology and use. Such a feature is enabled clearly by power electronics. Both the solar-thermal and photovoltaic (PV) technologies have an almost exponential growth in installed capacity and applications. Both of them contribute to the overall grid control and power electronics research and advancement. Among the renewable energy systems, photovoltaic (PV) systems are the ones that make use of an extended scale of the advanced power electronics technologies. The specification of a power electronics interface is subject to the requirements related not only to the renewable energy source itself but also to its effects on the operations of the systems on which it is connected, especially the ones where these intermittent energy sources constitute a significant part of the total system capacity. Power electronics can also play a significant role in enhancing the performance and efficiency of PV systems. Furthermore, the use of appropriate power electronics enables solar generated electricity to be integrated into power grid. Aside from improving the quality of solar panels themselves, power electronics can provide another means of improving energy efficiency in PV and solar-thermal energy systems.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2481 ◽  
Author(s):  
Cao ◽  
Esangbedo ◽  
Bai ◽  
Esangbedo

Selection of the most appropriate contractor for the installation of solar panels is essential to maximizing the benefit of this renewable, sustainable energy source. Solar energy is one of the 100% renewable energy sources, but implementation may not be very simple and cost-effective. A key phase in the implementation of renewable energy is the evaluation of contractors for the installation of solar panels, which is addressed as a multi-criteria decision-making (MCDM) problem. A new hybrid method is proposed that combines the stepwise weight analysis ratio assessment (SWARA) and full consistent method (FUCOM) weights that are represented as grey numbers used with traditional grey relational analysis (GRA) and evaluation based on distance from average solution (EDAS) methods. The ranking of contractors by both methods is the same, which confirmed the results presented in this research. The use of the grey SWARA-FUCOM weighting method combined with the GRA and EDAS methods increased the decision-makers’ (DMs) confidence in awarding the installation of the solar panel energy system to the top-ranked contractor.


Sign in / Sign up

Export Citation Format

Share Document