scholarly journals Thermodynamic sustainability assessment for heating of residential building

2019 ◽  
Vol 111 ◽  
pp. 04028
Author(s):  
Milan Gojak ◽  
Tamara Bajc

More than one third of the world’s primary energy demand refers to residential sector. Heating is considered as one of the main part of the energy consumption in buildings. In this study, a thermodynamic sustainability assessment analysis of different energy sources for heating of residential building, with net floor heated area of 162 m2, for Belgrade weather data, was presented. Five options of energy sources were studied, namely: coal, natural gas, electricity, district heating and air-water heat pump. Energy and exergy analyses were conducted and appropriate efficiencies were determined. Energy and exergy flows in boundaries of the building and in the whole chain from primary to final values were analyzed. The environmental impact factor and exergetic sustainability index were determined for all considered energy sources. The exergy efficiency is very low in all analyzed cases, which further implies poor thermodynamic compatibility of energy quality from the supplied side and the energy used for building heating. It was shown that the highest exergy efficiency is for the case of heat pump utilization (about 6%), due to the energy used from environment. The minimum environmental impact factor (15.37) and maximum exergetic sustainability index (0.065) were found for the case of heat pump utilization.

2010 ◽  
Vol 78 (12) ◽  
pp. 970-975 ◽  
Author(s):  
Ken-ichiro OTA ◽  
Akimitsu ISHIHARA ◽  
Koichi MATSUZAWA ◽  
Shigenori MITSUSHIMA

2011 ◽  
Vol 347-353 ◽  
pp. 1801-1805
Author(s):  
Arif Hepbasli ◽  
Mustafa Tolga Balta ◽  
Zeyad Alsuhaibani

In this study, we considered a building, which had a volume of 336 m3 and a floor area of 120 m2, with indoor and outdoor air temperatures of 20 oC and 0 oC, respectively. For heating this building, we selected two options, namely (i) a ground-source (geothermal) heat pump system (Case 1), and (ii) a solar collector heating system (Case 2). We employed both energy and exergy analysis methods to assess their performances and compare them through energy and exergy efficiencies and sustainability index. We also investigated energy and exergy flows for this building and illustrated from the primary energy transformation through the heat production system and a distribution system to a heating system, and from there, via the indoor air, across the building envelope to the surrounding air. We calculated that the total exergy efficiencies for Cases 1 and 2 were 4.7%, and 26.1% while sustainability index values for both cases were 1.049 and 1.353 at a reference (dead) state temperature of 0 oC, respectively.


Sign in / Sign up

Export Citation Format

Share Document