dead state
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 3 (5) ◽  
pp. 47-50
Author(s):  
Robert A. Sizov

The discovery and study of real magnetic charges, as well as true anti-electrons in the structures of substance and their inclusion in basic physical concepts, allowed the author to establish that two physical images correspond to a person: a real human body, i.e., his mass composition (atoms, nucleons, etc.) and the spinor image in the form of its biofield, displayed in the Energo-medium (Energo-ether) that and is the physical Aura. The spinor image or Aura of person is not a simple “photograph” but represents a system of real physical states or fractals in the Energo-medium, which, at the cellular level, are connected with the human body and interact with it at all stages of its existence. It is the physical Aura that is responsible for all the power reactions manifested by the body, providing, for example, “force service” of the activity of the central and autonomic nervous system. The article shows the conditions for the transformation of the Aura into a dead state after the death of a person, and also notes some fractals in its composition that are able to maintain former vital reactions for some time. The external manifestations of such “long-lived” fractals of the Aura, meeting the conditions of identity with a deceased person, can be perceived by some sensitive people. It is the last circumstance that can explain the numerous observations of ghosts and images of deceased people, emerging both in a dream and in reality. At the same time, the ability to form the marked fractals is not an exclusive property of the Aura of dying or deceased people. Such fractals capable of emitting and the quite healthy people in some of life situations. These latter fractals in the surrounding space can be perceived by some people and showing in ordinary dreams.


Author(s):  
V Venkateswara Rao ◽  
Santanu Prasad Datta

Abstract A comprehensive exergy, exergo-economic and sustainability assessment of seven conventional to hybrid air-conditioning systems comprising direct and indirect evaporative coolers with direct expansion system, and their several combinations integrated into an 8-story domestic building for 5 different cities corresponding to arid, semi-arid, humid sub-tropical, tropical wet and dry, and tropical wet climatic zones across India are investigated based on simulation output from EnergyPlus. The exergetic performances are reported for varying dead state temperatures ranging from 5°C to 40°C while saturated humidity ratio and pressure at system outlet are two other dead state properties. The results reveal that the specific exergy of moist air and exergetic efficiency decrease with increasing dead state temperature and become least at a dead state temperature near to American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) comfort temperature of 23°C. In arid, semi-arid and humid subtropical climates, the three-stage evaporative cooling system exhibited the lowest exergy destruction of 100 J kg−1 and the highest exergy efficiency of 90% at a dead state temperature of 40°C. The two-stage direct evaporative-direct expansion cooling system exhibited superior exergy efficiency of around 90% in tropical wet and dry and tropical wet zones. Further, the Grassmann diagram based on the climate of Hyderabad indicated that the three-stage cooling system is energetically and exergetically optimum with exergy destruction of 28.86%.


2021 ◽  
pp. 1-39
Author(s):  
Bibhuti B. Sahoo ◽  
Maryom Dabi ◽  
Ujjwal K. Saha

Abstract Exergy analysis of the reciprocating internal combustion (IC) engines is studied by estimating various input and output energy transfer parameters concerning a dead state reference. Exergy terms such as fuel input, work output, cooling, and exhaust gas are measured and are set into the exergy balance equation to determine the amount of loss or destruction. Exergy destructions are found in many forms such as combustion (entropy generation), cylinder wall, friction, mixing, blow-by, and others. These exergy terms have been estimated by considering various factors such as engine type, fuel type, environmental condition, and others. In this article, the different methods employed in estimating these exergy terms have been reviewed. It attempts to make a compendium of these evaluation methods and segregates them under individual exergy terms with necessary descriptions. The fuel input measurement is mostly based on Gibb's free energy and the lower heating value, whereas its higher heating value is used during the fuel exergy calculation on a molar basis. The work output of the engines is estimated either from the crankshaft or by analyzing the cylinder pressure and volume. The exergy transfer with cooling medium and exhaust gas depends on the temperature of gas. The maximum achievable engine performance is quantified by estimating the exergy efficiency. This piece of study will not only provide a plenty of information on exergy evaluation methods of IC engines but will also allow the future researchers to adopt the appropriate one.


Author(s):  
USPENSKAYA E. V. ◽  
PLETENEVA T. V. ◽  
PHAM MY HANH ◽  
KAZIMOVA I. V.

Objective: To evaluate the biological activity of chemical peeling substances based on enzymatic and Arrhenius kinetics using Spirostomum ambiguum as an alternative approach to animal experiments. Methods: The Spirotox method was used to analyze the mechanism of «xenobiotic-cell» interaction, similar to the Michaelis-Menten enzymatic kinetics. The Hill-Langmuir equation was used to determine the degree of cooperativity in the binding of xenobiotics to cellular receptors. Using the Arrhenius kinetics, the observed activation energy obsEa of cell death in the model solutions of glycolic and carbolic acids was determed, which will allow predicting the toxicity parameters of any peeling substances. Results: The relationship Spirostomum ambiguum lifetime tL-lgC concentration of peeling compound solution made it possible to characterize the moment of cellular transition from the intermediate state C•Ln to the dead state DC, characterized by irreversible structural and functional changes in the cell/death. The values were 5.3 mmol•l-1 for glycolic acid solutions and 2.8 mmol•l-1 for carbolic acid solutions. Equilibrium constants Keq of complexation, the rate of infusoria death fm, and the degree of ligand cooperativity n were calculated. The activation energy °bsEa of cell death was determined in Arrhenius coordinates, which were 210±0.39 kJ·mol-1 and 108±0.09 kJ·mol-1 for glycolic and carbolic acids respectively. The correlation between the values ​​of activation energy and DL50 of mammals (rats) was discovered. Conclusion: The obtained kinetic parameters made it possible, without animals and humans testing, to characterize the mechanisms of interaction of peeling substances with the living cell.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2172
Author(s):  
Ahmad A. Alsarayreh ◽  
Ayman Al-Maaitah ◽  
Menwer Attarakih ◽  
Hans-Jörg Bart

We conducted energy and exergy analyses of an adsorption chiller to investigate the effect of recooling-water temperatures on the cooling capacity and Coefficient of Performance (COP) with variable cycle modes. We investigated both the effect of the recooling-water temperature and the dead state temperature on the exergy destruction in the chiller components. Our results show that there is an optimum reheat cycle mode for each recooling-water temperature range. For the basic single stage cycle, the exergy destruction is mainly accrued in the desorber (49%), followed by the adsorber (27%), evaporator (13%), condenser (9%), and expansion valve (2%). The exergy destruction for the preheating process is approximately 35% of the total exergy destruction in the desorber. By contrast, the precooling process is almost 58% of the total exergy destruction in the adsorber. The exergy destruction decreases when increasing the recooling-water and the dead state temperatures, while the exergy efficiency increases. Nonetheless, the exergy efficiency decreases with an increase in the recooling-water temperature at fixed dead state temperatures. The effect of the mass recovery time in the reheat cycle on exergy destruction was also investigated, and the results show that the exergy destruction increases when the mass recovery time increases. The exergy destruction in the adsorbent beds was the most sensitive to the increase in mass recovery time.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
John Leggett ◽  
Edward Richardson ◽  
Stephan Priebe ◽  
Aamir Shabbir ◽  
Vittorio Michelassi ◽  
...  

Abstract Loss analysis is a valuable technique for improving the thermodynamic performance of turbomachines. Analyzing loss in terms of the “mechanical work potential” (Miller, R.J., ASME Turbo Expo 2013, GT2013-95488) provides an instantaneous and local account of the thermal and aerodynamic mechanisms contributing to the loss of thermodynamic performance. This study develops the practical application of mechanical work potential loss analysis, providing the mathematical formulations necessary to perform loss analysis using practical Reynolds-averaged Navier–Stokes (RANS) or large eddy simulations (LES). The analysis approach is demonstrated using RANS and LES of a linear compressor cascade, both with and without incoming wakes. Spatial segmentation is used to attribute loss contributions to specific regions of the flow, and phase-averaging is performed in order to associate the variation of different loss contributions with the periodic passage of wakes through the cascade. For this un-cooled linear cascade, viscous dissipation is the dominant source of loss. The analysis shows that the contribution of the viscous reheat effect depends on the operating pressure of the compressor stage relative to the ambient “dead state” pressure—implying that the optimal blade profile for a low-pressure compressor stage may be different from the optimal profile for a high-pressure compressor stage in the same engine, even if the operating conditions for both stages are dynamically similar.


2020 ◽  
Vol 12 (1) ◽  
pp. 321-345
Author(s):  
Adam Searle

Abstract The spectacle of de-extinction is often forward facing at the interface of science fiction and speculative fact, haunted by extinction’s pasts. Missing from this discourse, however, is a robust theorization of de-extinction in the present. This article presents recent developments in the emergent fields of resurrection biology and liminality to conceptualize the anabiotic (not living nor dead) state of de/extinction. Through two stories, this article explores the epistemological perturbation caused by the suspended animation of genetic material. Contrasting the genomic stories of the bucardo, a now extinct subspecies of Iberian ibex whose genome was preserved before the turn of the millennium, and the woolly mammoth, whose genome is still a work in progress, the author poses questions concerning the existential authenticity of this genomic anabiosis. They serve as archetypal illustrations of salvaged and synthesized anabiotic creatures. De/extinction is presented as a liminal state of being, both living and dead, both fact and fiction, a realm that we have growing access to through the proliferation of synthetic biology and cryopreservation. The article concludes through a presentation of anabiotic geographies, postulating on the changing biocultural significances we attach to organisms both extinct and extant, and considering their implications for the contemporary extinction crisis.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 211 ◽  
Author(s):  
Takeshi Yasunaga ◽  
Yasuyuki Ikegami

Ocean thermal energy conversion (OTEC) converts the thermal energy stored in the ocean temperature difference between warm surface seawater and cold deep seawater into electricity. The necessary temperature difference to drive OTEC heat engines is only 15–25 K, which will theoretically be of low thermal efficiency. Research has been conducted to propose unique systems that can increase the thermal efficiency. This thermal efficiency is generally applied for the system performance metric, and researchers have focused on using the higher available temperature difference of heat engines to improve this efficiency without considering the finite flow rate and sensible heat of seawater. In this study, our model shows a new concept of thermodynamics for OTEC. The first step is to define the transferable thermal energy in the OTEC as the equilibrium state and the dead state instead of the atmospheric condition. Second, the model shows the available maximum work, the new concept of exergy, by minimizing the entropy generation while considering external heat loss. The maximum thermal energy and exergy allow the normalization of the first and second laws of thermal efficiencies. These evaluation methods can be applied to optimized OTEC systems and their effectiveness is confirmed.


Author(s):  
John Leggett ◽  
Edward Richardson ◽  
Stephan Priebe ◽  
Aamir Shabbir ◽  
Vittorio Michelassi ◽  
...  

Abstract Loss analysis is a valuable technique for improving the thermodynamic performance of turbomachines. Analysing loss in terms of the ‘mechanical work potential’ (Miller, R.J., ASME Turbo Expo 2013, GT2013-95488) provides an instantaneous and local account of the thermal and aerodynamic mechanisms contributing to the loss of thermodynamic performance. This study develops the practical application of mechanical work potential loss analysis, providing the mathematical formulations necessary to perform loss analysis using practical Reynolds-Averaged Navier-Stokes (RANS) or Large Eddy Simulations (LES). The analysis approach is demonstrated using RANS and LES of a linear compressor cascade, both with and without incoming wakes. Spatial segmentation is used to attribute loss contributions to specific regions of the flow, and phase-averaging is performed in order to associate the variation of different loss contributions with the periodic passage of wakes through the cascade. For this un-cooled linear cascade, viscous dissipation is the dominant source of loss. The analysis shows that the contribution of the viscous reheat effect depends on the operating pressure of the compressor stage relative to the ambient ‘dead state’ pressure — implying that the optimal blade profile for a low-pressure compressor stage may be different from the optimal profile for a high-pressure compressor stage in the same engine, even if the operating conditions for both stages are dynamically-similar.


Author(s):  
Isha M. Shirbhate ◽  
Sunita S. Barve

<p>Solar Energy is established as an alternative source of energy known as renewable energy. In a developing country like India, the perspective of Solar Energy is important, as it supports a limitless source of energy. Monitoring and prediction of photo-voltaic energy generation help to reduce the energy loss and empower to utilize more energy. Solar energy prediction is challenging as it depends on the fluctuating solar radiations and climate conditions. The problem statement is to monitor solar panels and predict energy generation for energy management procedure. In this paper, the Internet of Things and Machine Learning algorithms are used as a powerful tool for developing a smart solar system. The metro-logical data such as humidity, temperature and photovoltaic panel data is used as input to forecast solar power generation. For prediction, we examine time-series of solar energy data with Hidden Markov Model. This model considers the probabilistic correlation between previous values to next value in time-series. Experimental results shows that individual panel dead state is located successfully and time-series based solar energy prediction emulate the actual power generation.</p>


Sign in / Sign up

Export Citation Format

Share Document